4.2 Trigonometry 243
This telescopes to
1
4
[(
−
1
3
)n
cos
(
3 n+^1 a
)
−
(
−
1
3
)− 1
cosa
]
.
Fora= 3 −nπ, we obtain the identity from the statement.
Test your skills against the following problems.
688.Prove that
27 sin^39 ◦+9 sin^327 ◦+3 sin^381 ◦+sin^3243 ◦=20 sin 9◦.
689.Prove that
1
cot 9◦−3 tan 9◦
+
3
cot 27◦−3 tan 27◦
+
9
cot 81◦−3 tan 81◦
+
27
cot 243◦−3 tan 243◦
=10 tan 9◦.
690.Prove that
1
sin 45◦sin 46◦
+
1
sin 47◦sin 48◦
+···+
1
sin 133◦sin 134◦
=
1
sin 1◦
.
691.Obtain explicit values for the following series:
(a)
∑∞
n= 1
arctan
2
n^2
,
(b)
∑∞
n= 1
arctan
8 n
n^4 − 2 n^2 + 5
.
692.Forn≥0 let
un=arcsin
√
n+ 1 −
√
n
√
n+ 2
√
n+ 1
.
Prove that the series
S=u 0 +u 1 +u 2 +···+un+···
is convergent and find its limit.
Now we turn to telescopic products.