6.2 Binomial Coefficients and Counting Methods 301869.(a) Prove the identity
(
m+n
k)
=
∑kj= 0(
m
j)(
n
k−j)
.
(b) Prove that the quantum binomial coefficients defined in the previous section
satisfy the identity
(
m+n
k)
q=
∑kj= 0q(m−j )(k−j)(
m
j)
q(
n
k−j)
q.
870.Compute the sum
(
n
0
)
−
(
n
1)
+
(
n
2)
−···+(− 1 )m(
n
m)
.
871.Write in short form the sum
(
n
k
)
+
(
n+ 1
k)
+
(
n+ 2
k)
+···+
(
n+m
k)
.
872.Prove that the Fibonacci numbers satisfy
Fn=(
n
0)
+
(
n− 1
1)
+
(
n− 2
2)
+···.
873.Denote byP (n)the number of partitions of the positive integern, i.e., the number of
ways of writingnas a sum of positive integers. Prove that the generating function
ofP (n),n≥1, is given by
∑∞
n= 0P (n)xn=1
( 1 −x)( 1 −x^2 )( 1 −x^3 )···with the conventionP( 0 )=1.874.Prove that the number of ways of writingnas a sum of distinct positive integers is
equal to the number of ways of writingnas a sum of odd positive integers.
875.Letpbe an odd prime number. Find the number of subsets of{ 1 , 2 ,...,p}with
the sum of elements divisible byp.
876.For a positive integern, denote byS(n)the number of choices of the signs “+’’ or
“−’’ such that± 1 ± 2 ±···±n=0. Prove that
S(n)=
2 n−^1
π∫ 2 π0costcos 2t···cosntdt.