364 Algebra
=
(
x
y
+
y
x
) 2
+
(
y
z
+
z
y
) 2
+
(
z
x
+
x
z
) 2
− 4.
Hence
m^2 +n^2 +p^2 =mnp+ 4.
Adding 2(mn+np+pm)to both sides yields
(m+n+p)^2 =mnp+ 2 (mn+np+pm)+ 4.
Adding now 4(m+n+p)+4 to both sides gives
(m+n+p+ 2 )^2 =(m+ 2 )(n+ 2 )(p+ 2 ).
It follows that
(m+ 2 )(n+ 2 )(p+ 2 )= 20042.
But 2004= 22 × 3 ×167, and a simple case analysis shows that the only possibilities are
(m+ 2 ,n+ 2 ,p+ 2 )=( 4 , 1002 , 1002 ),( 1002 , 4 , 1002 ),( 1002 , 1002 , 4 ). The desired
triples are( 2 , 1000 , 1000 ),( 1000 , 2 , 1000 ),( 1000 , 1000 , 2 ).
(proposed by T. Andreescu for the 43rd International Mathematical Olympiad, 2002)
94.LetM(a,b)=max(a^2 +b, b^2 +a). ThenM(a,b)≥a^2 +bandM(a,b)≥b^2 +a,
so 2M(a,b)≥a^2 +b+b^2 +a. It follows that
2 M(a,b)+
1
2
≥
(
a+
1
2
) 2
+
(
b+
1
2
) 2
≥ 0 ,
henceM(a,b)≥−^14. We deduce that
min
a,b∈R
M(a,b)=−
1
4
,
which, in fact, is attained whena=b=−^12.
(T. Andreescu)
95.Leta= 2 xandb= 3 x. We need to show that
a+b−a^2 +ab−b^2 ≤ 1.
But this is equivalent to
0 ≤
1
2
[
(a−b)^2 +(a− 1 )^2 +(b− 1 )^2