Algebra 421
withak,bk∈R. It follows that
detQ(X)=
∏m
k= 1
det
[
(X+ak)^2 +b^2 kIn
]
≥ 0 ,
and the latter is positive, since for allk,
det
[
(X+ak)^2 +b^2 kIn
]
=bk^2 ndet
[(
1
bk
X+
ak
bk
) 2
+In
]
≥ 0.
In particular,Q(X) =Yand thus the functionfis not onto.
Second solution: Because the polynomialP(t)is of even degree, the function it defines
onRis not onto. Letμbe a number that is not of the formP(t),t∈R. Then the matrix
μInis not in the image off. Indeed, ifXis ann×nmatrix, then by the spectral mapping
theorem the eigenvalues ofP(X)are of the formp(λ), whereλis an eigenvalue ofX.
Sinceμis not of this form, it cannot be an eigenvalue of a matrix in the image off. But
μis the eigenvalue ofμIn, which shows that the latter is not in the image off, and the
claim is proved.
(Gazeta Matematic ̆a(Mathematics Gazette, Bucharest), proposed by D. Andrica)
220.IfA^2 =On, then
det(A+In)=det
(
1
4
A^2 +A+In
)
=det
(
1
2
A+In
) 2
=
(
det
(
1
2
A+In
)) 2
≥ 0.
Similarly,
det(A−In)=det(−(In−A))=(− 1 )ndet(In−A)=(− 1 )ndet
(
In−A+
1
4
A^2
)
=(− 1 )ndet
(
In−
1
2
A
) 2
=(− 1 )n
(
det
(
In−
1
2
A
)) 2
≤ 0 ,
sincenis odd. Hence det(A+In)≥ 0 ≥det(A−In).
IfA^2 =In, then
0 ≤(det(A+In)^2 )=det(A+In)^2 =det(A^2 + 2 A+In)
=det( 2 A+ 2 In)= 2 ndet(A+In).
Also,
det(A−In)=(− 1 )ndet(In−A)=(− 1 )ndet
(
1
2
( 2 In− 2 A)