Advanced book on Mathematics Olympiad

(ff) #1

34 2 Algebra


Example.Find the maximum of the functionf (x, y, z)= 5 x− 6 y+ 7 zon the ellipsoid
2 x^2 + 3 y^2 + 4 z^2 =1.


Solution.For a point(x,y,z)on the ellipsoid,


(f (x, y, z))^2 =( 5 x− 6 y+ 7 z)^2 =

(

5


2

·


2 x−

6


3

·


3 y+

7

2

· 2 z

) 2


((

5


2

) 2

+

(


6


3

) 2

+

(

7

2

) 2 )(

(


2 x)^2 +(


3 y)^2 +( 2 z)^2

)

=

147

4

( 2 x^2 + 3 y^2 + 4 z^2 )=

147

4

.

Hence the maximum offis



147 /2, reached at the point(x,y,z)on the ellipsoid for
whichx, z >0,y<0, andx:y:z=√^52 :−√^63 :^72. 


The next problem was on the short list of the 1993 International Mathematical
Olympiad, being proposed by the second author of the book.


Example.Prove that


a
b+ 2 c+ 3 d

+

b
c+ 2 d+ 3 a

+

c
b+ 2 a+ 3 b

+

d
a+ 2 b+ 3 c


2

3

,

for alla, b, c, d >0.


Solution.Denote byEthe expression on the left. Then


4 (ab+ac+ad+bc+bd+cd)E
=(a(b+ 2 c+ 3 d)+b(c+ 2 d+ 3 a)+c(d+ 2 a+ 3 b)+d(a+ 2 b+ 3 c))

×

(

a
b+ 2 c+ 3 d

+

b
c+ 2 d+ 3 a

+

c
b+ 2 a+ 3 b

+

d
a+ 2 b+ 3 c

)

≥(a+b+c+d)^2 ,

where the last inequality is a well-disguised Cauchy–Schwarz. Finally,


3 (a+b+c+d)^2 ≥ 8 (ab+ac+ad+bc+bd+cd),

because it reduces to


(a−b)^2 +(a−c)^2 +(a−d)^2 +(b−c)^2 +(b−d)^2 +(c−d)^2 ≥ 0.

Combining these two and cancelling the factorab+ac+ad+bc+bd+cd, we obtain
the inequality from the statement. 

Free download pdf