Real Analysis 485Let us writelim
n→∞ank+^1
nk=
⎛
⎝lim
n→∞ak+k 1
n
n⎞
⎠
k
.Using the Cesàro–Stolz theorem, we havelim
n→∞ak+k 1
n
n=lim
n→∞ak+k 1
n+ 1 −ak+k 1
n
n+ 1 −n=lim
n→∞k√
akn++^11 −k√
akn+^1=nlim→∞akn++^11 −akn+^1
(
k√
akn++^11)k− 1
+(
k√
akn++^11)k− 2
√kak+ 1
n +···+(
√kak+ 1
n)k− 1=lim
n→∞(an+ 1 −an)(ank+ 1 +akn+−^11 an+···+ank)
(
k√
akn++^11)k− 1
+(
k√
akn++^11)k− 2
√kak+ 1
n +···+(
√kak+ 1
n)k− 1=nlim→∞akn+ 1 +akn−+^11 an+···+ank
√kan((
k√
ank++ 11)k− 1
+(
k√
ank++ 11)k− 2
√kak+ 1
n +···+(
√kak+ 1
n)k− 1).
Dividing both sides byank, we obtain
lim
n→∞ak+k 1
n
n= lim
n→∞(
an+ 1
an)k
+(
an+ 1
an)k− 1
+···+ 1
(
an+ 1
an)(k+^1 )(kk−^1 )
+(
an+ 1
an)(k+^1 )(kk−^2 )
+···+ 1.
Since limn→∞ana+n^1 = 1 ,we obtain
nlim→∞ak+k 1
n
n=
k+ 1
k.
Hence
lim
n→∞ank+^1
nk=
(
1 +
1
k)k
.(67th W.L. Putnam Mathematical Competition, proposed by T. Andreescu; the special
casek=2 was the object of the second part of a problem given at the regional round of
the Romanian Mathematical Olympiad in 2004)
348.Assume no suchξexists. Thenf(a)>aandf(b)<b. Construct recursively the
sequences(an)n≥ 1 and(bn)n≥ 1 witha 1 =a,b 1 =b, and