Real Analysis 525
f
(i+ 2
n
)
+f
(i
n
)
2
≥f
(
i+ 1
n
)
+
2
n
,i= 1 , 2 ,...,n,
or
f
(
i+ 2
n
)
−f
(
i+ 1
n
)
≥f
(
i+ 1
n
)
−f
(
i
n
)
+
4
n
,i= 1 , 2 ,...,n.
In other words, (^) i+ 1 ≥ (^) i+^4 n. Combining this fornconsecutive values ofigives
(^) i+n≥ (^) i+ 4.
Summing this inequality fori=0ton−1 and canceling terms yields
f( 2 )−f( 1 )≥f( 1 )−f( 0 )+ 4 n.
This cannot hold for alln≥1. Hence, there are no very convex functions.
Second solution: We show by induction onnthat the given inequality implies
f(x)+f(y)
2
−f
(
x+y
2
)
≥ 2 n|x−y|, forn≥ 0.
This will yield a contradiction, because for fixedxandythe right-hand side gets arbitrarily
large, while the left-hand side remains fixed.
The statement of the problem gives us the base casen=0. Now, if the inequality
holds for a givenn, then for two real numbersaandb,
f(a)+f(a+ 2 b)
2
≥f(a+b)+ 2 n+^1 |b|,
f(a+b)+f(a+ 3 b)≥ 2 (f (a+ 2 b)+ 2 n+^1 |b|),
and
f(a+ 2 b)+f(a+ 4 b)
2
≥f(a+ 3 b)+ 2 n+^1 |b|.
Adding these three inequalities and canceling terms yields
f(a)+f(a+ 4 b)
2
≥f(a+ 2 b)+ 2 n+^3 |b|.
Settingx=a,y=a+ 4 b, we obtain
f(x)+f(y)
2
≥f
(
x+y
2
)
+ 2 n+^1 |x−y|,