Real Analysis 533
With the substitutionx−^1 x=twe have( 1 +x^12 )dx=dt, and the integral takes the form
∫
1
t^2 + 1
dt=arctant+C.
We deduce that the integral from the statement is equal to
arctan
(
x−
1
x
)
+C.
448.Substituteu=
√
ex− 1
ex+ 1 ,0<u<1. Thenx =ln(^1 +u
(^2) )−ln( 1 −u (^2) ), and
dx=( 1 +^2 uu 2 + 1 −^2 uu 2 )du. The integral becomes
∫
u
(
2 u
u^2 + 1
+
2 u
u^2 − 1
)
du=
∫ (
4 −
2
u^2 + 1
+
2
u^2 − 1
)
du
= 4 u−2 arctanu+
∫ (
1
u+ 1
+
1
1 −u
)
du
= 4 u−2 arctanu+ln(u+ 1 )−ln(u− 1 )+C.
In terms ofx, this is equal to
4
√
ex− 1
ex+ 1
−2 arctan
√
ex− 1
ex+ 1
+ln
(√
ex− 1
ex+ 1
+ 1
)
−ln
(√
ex− 1
ex+ 1
− 1
)
+C.
449.If we naively try the substitutiont=x^3 +1, we obtain
f(t)=
√
t+ 1 − 2
√
t+
√
t+ 9 − 6
√
t.
Now we recognize the perfect squares, and we realize that
f(x)=
√
(
√
x^3 + 1 − 1 )^2 +
√
(
√
x^3 + 1 − 3 )^2 =|
√
x^3 + 1 − 1 |+|
√
x^3 + 1 − 3 |.
Whenx∈[ 0 , 2 ],1≤
√
x^3 + 1 ≤3. Therefore,
f(x)=
√
x^3 + 1 − 1 + 3 −
√
x^3 + 1 = 2.
The antiderivatives offare therefore the linear functionsf(x)= 2 x+C, whereCis a
constant.
(communicated by E. Craina)
450.Letfn= 1 +x+x
2
2 !+···+
xn
n!. Thenf
′(x)= 1 +x+···+xn−^1
(n− 1 )!. The integral
in the statement becomes