Real Analysis 535
=arctanx+
1
3
arctanx^3.
To write the answer in the required form we should have
3 arctanx+arctanx^3 =arctan
P(x)
Q(x)
.
Applying the tangent function to both sides, we deduce
3 x−x^3
1 − 3 x^2 +x
3
1 −^31 −x− 3 xx 23 ·x^3
=tan
(
arctan
P(x)
Q(x)
)
.
From here
arctan
P(x)
Q(x)
=arctan
3 x− 3 x^5
1 − 3 x^2 − 3 x^4 +x^6
,
and henceP(x)= 3 x− 3 x^5 ,Q(x)= 1 − 3 x^2 − 3 x^4 +x^6. The final answer is
1
3
arctan
3 x− 3 x^5
1 − 3 x^2 − 3 x^4 +x^6
+C.
453.The functionf:[− 1 , 1 ]→R,
f(x)=
√ (^3) x
√ (^31) −x+√ (^31) +x,
is odd; therefore, the integral is zero.
454.We use the example from the introduction for the particular functionf(x)= 1 +xx 2
to transform the integral into
π
∫ π 2
0
sinx
1 +sin^2 x
dx.
This is the same as
π
∫ π 2
0
−
d(cosx)
2 −cos^2 x
,
which with the substitutiont=cosxbecomes
π
∫ 1
0
1
2 −t^2
dt=
π
2
√
2
ln
√
2 +t
√
2 −t
∣
∣∣
∣∣
1
0
=
π
2
√
2
ln