Advanced book on Mathematics Olympiad

(ff) #1
Real Analysis 535

=arctanx+

1

3

arctanx^3.

To write the answer in the required form we should have

3 arctanx+arctanx^3 =arctan
P(x)
Q(x)

.

Applying the tangent function to both sides, we deduce


3 x−x^3
1 − 3 x^2 +x

3

1 −^31 −x− 3 xx 23 ·x^3

=tan

(

arctan

P(x)
Q(x)

)

.

From here

arctan

P(x)
Q(x)

=arctan

3 x− 3 x^5
1 − 3 x^2 − 3 x^4 +x^6

,

and henceP(x)= 3 x− 3 x^5 ,Q(x)= 1 − 3 x^2 − 3 x^4 +x^6. The final answer is

1
3

arctan
3 x− 3 x^5
1 − 3 x^2 − 3 x^4 +x^6

+C.

453.The functionf:[− 1 , 1 ]→R,

f(x)=

√ (^3) x
√ (^31) −x+√ (^31) +x,
is odd; therefore, the integral is zero.
454.We use the example from the introduction for the particular functionf(x)= 1 +xx 2
to transform the integral into
π
∫ π 2
0
sinx
1 +sin^2 x
dx.
This is the same as
π
∫ π 2
0



d(cosx)
2 −cos^2 x

,

which with the substitutiont=cosxbecomes

π

∫ 1

0

1

2 −t^2

dt=

π
2


2

ln


2 +t

2 −t


∣∣

∣∣

1

0

=

π
2


2

ln


2 + 1


2 − 1

.
Free download pdf