Real Analysis 537This we already computed in the previous problem. (“Happiness is longing for repeti-
tion,’’ says M. Kundera.) So the answer to the problem isπ 8 ln 2.
(66th W.L. Putnam Mathematical Competition, 2005, proposed by T. Andreescu)
460.The function lnxis integrable near zero, and the function under the integral sign is
dominated byx−^3 /^2 near infinity; hence the improper integral converges. We first treat
the casea=1. The substitutionx= 1 /tyields
∫∞0lnx
x^2 + 1dx=∫ 0
∞ln^1 t
1
t^2 +^1(
−
1
t^2)
dt=−∫∞
0lnt
t^2 + 1dt,which is the same integral but with opposite sign. This shows that fora=1 the integral
is equal to 0. For generalawe compute the integral using the substitutionx=a/tas
follows
∫∞
0lnx
x^2 +a^2dx=∫ 0
∞lna−lnt
(a
t) 2
+a^2·
(
−
a
t^2)
dt=1
a∫∞
0lna−lnt
1 +t^2dt=
lna
a∫∞
0dt
t^2 + 1−
1
a∫∞
0lnt
t^2 + 1dt=
πlna
2 a.
(P.N. de Souza, J.N. Silva,Berkeley Problems in Mathematics, Springer, 2004)461.The statement is misleading. There is nothing special about the limits of integration!
Theindefiniteintegral can be computed as follows:
∫
xcosx−sinx
x^2 +sin^2 xdx=∫ cosx
x −sinx
x^2
1 +(sinx
x) 2 dx=∫
1
1 +
(sinx
x) 2
(
sinx
x)′
dx=arctan(
sinx
x)
+C.
Therefore,
∫ π 20xcosx−sinx
x^2 +sin^2 xdx=arctan2
π−
π
4.
(Z. Ahmed)462.Ifαis a multiple ofπ, thenI(α)= 0. Otherwise, use the substitutionx =
cosα+tsinα. The indefinite integral becomes
∫
sinαdx
1 − 2 xcosα+x^2
=
∫
dt
1 +t^2=arctant+C.It follows that the definite integralI(α)has the value