Real Analysis 547481.Suppose thatx>y. Transform the inequality successively intomn(x−y)(xm+n−^1 −ym+n−^1 )≥(m+n− 1 )(xm−ym)(xn−yn),and then
xm+n−^1 −ym+n−^1
(m+n− 1 )(x−y)≥
xm−ym
m(x−y)·
xn−yn
n(x−y).
The last one can be written as(x−y)∫xytm+n−^2 dt≥∫xytm−^1 dt·∫xytn−^1 dt.Here we recognize Chebyshev’s inequality applied to the integrals of the functionsf, g:
[y, x]→R,f(t)=tm−^1 andg(t)=tn−^1.
(Austrian–Polish Competition, 1995)
482.Observe thatfbeing monotonic, it is automatically Riemann integrable. Taking
the mean offon the intervals[ 0 ,α]and[ 1 −α, 1 ]and using the monotonicity of the
function, we obtain1
1 −α∫ 1
αf(x)dx≤1
α∫α0f(x)dx,whenceα∫ 1
αf(x)dx≤( 1 −α)∫α0f(x)dx.Adding
∫α
0 f(x)dxto both sides givesα∫ 1
0f(x)dx≤∫α0f(x)dx,as desired.
(Soviet Union University Student Mathematical Olympiad, 1976)
483.Forx∈[ 0 , 1 ], we havef′(x)≤f′( 1 ), and so
f′( 1 )
f^2 (x)+ 1≤
f′(x)
f^2 (x)+ 1.
Integrating, we obtainf′( 1 )∫ 1
0dx
f^2 (x)+ 1≤
∫ 1
0f′(x)
f^2 (x)+ 1
=arctanf( 1 )−arctanf( 0 )=arctanf( 1 ).