Real Analysis 573
Consequently, the integral we are computing is equal toπ
2
32.
(American Mathematical Monthly, proposed by M. Hajja and P. Walker)
520.We have
I=
∫∫
D
ln|sin(x−y)|dxdy=
∫π
0
(∫y
0
ln|sin(y−x)|dx
)
dy
=
∫π
0
(∫y
0
ln sintdt
)
dy=y
∫y
0
ln sintdt
∣∣
∣∣
y=π
y= 0
−
∫π
0
yln sinydy
=πA−B,
whereA=
∫π
0 ln sintdt,B =
∫π
0 tln sintdt. Note that here we used integration by
parts! We compute further
A=
∫ π 2
0
ln sintdt+
∫π
π 2 ln sintdt=
∫ π 2
0
ln sintdt+
∫ π 2
0
ln costdt
=
∫ π 2
0
(ln sin 2t−ln 2)dt=−
π
2
ln 2+
1
2
A.
HenceA=−πln 2. ForBwe use the substitutiont=π−xto obtain
B=
∫π
0
(π−x)ln sinxdx=πA−B.
HenceB=π 2 A. Therefore,I=πA−B=−π
2
2 ln 2, and we are done.
Remark.The identity
∫ π 2
0
ln sintdt=−
π
2
ln 2
belongs to Euler.
(S. Radulescu, M. R ̆ adulescu, ̆ Teoreme ̧si Probleme de Analiza Matematic ̆ ̆a(Theorems
and Problems in Mathematical Analysis), Editura Didactica ̧ ̆si Pedagogic ̆a, Bucharest,
1982).
521.This problem applies the discrete version of Fubini’s theorem. Define
f(i,j)=
{
1 forj≤ai,
0 forj>ai.
The left-hand side is equal to
∑n
i= 1
∑m
∑m j=^1 f(i,j), while the right-hand side is equal to
j= 1
∑n
i= 1 f(i,j). The equality follows.