Real Analysis 581
∮
C
Pdx+Qdy+Rdz=
∫∫
S
(
∂Q
∂x
−
∂P
∂y
)
dxdy+
(
∂R
∂y
−
∂Q
∂z
)
dydz
+
(
∂P
∂z
−
∂R
∂x
)
dzdx.
Writing the parametrization with coordinate functions−→v 1 (s) = (x(s), y(s), z(s)),
−→v
2 (t)=(x′(t), y′(t), z′(t)), the linking number ofC 1 andC 2 (with the factor 41 πignored)
becomes
∮
C 1
∮
C 2
(x′−x)(dz′dy−dy′dz)+(y′−y)(dx′dz−dz′dx)+(z′−z)(dy′dx−dx′dy)
((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )^3 /^2
The 1-formPdx+Qdy+Rdz, which we integrate onC=C 1 ∪C′ 1 ,is
∮
C 2
(x′−x)(dz′dy−dy′dz)+(y′−y)(dx′dz−dz′dx)+(z′−z)(dy′dx−dx′dy)
((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )^3 /^2
.
Note that here we integrate against the variablesx′,y′,z′, so this expression depends
only onx, y, andz. Explicitly,
P(x, y, z)=
∮
C 2
−(y′−y)dz′+(z′−z)dy′
((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )^3 /^2
,
Q(x,y,z)=
∮
C 2
(x′−x)dz′−(z′−z)dx′
((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )^3 /^2
,
R(x, y, z)=
∮
C 2
−(x′−x)dy′+(y′−y)dx′
((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )^3 /^2
.
By the general form of Green’s theorem, lk(C 1 ,C 2 )=lk(C 1 ′,C 2 )if
∂Q
∂x
−
∂P
∂y
=
∂R
∂y
−
∂Q
∂z
=
∂P
∂z
−
∂R
∂x
= 0.
We will verify only∂Q∂x−∂P∂y=0, the other equalities having similar proofs. The part of
it that containsdz′is equal to
∮
C 2
− 2 ((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )−^3 /^2
+ 3 (x′−x)^2 ((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )−^5 /^2
+ 3 (y′−y)^2 ((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )−^5 /^2 dz′
=
∮
C 2
((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )−^3 /^2
+ 3 (z′−z)^2 ((x′−x)^2 +(y′−y)^2 +(z′−z)^2 )−^5 /^2 dz′