606 Geometry and Trigonometryn(−→a ·f(−→c)+−→c ·f(−→a))= 0 ,
a·f(m−→
b +n−→c)+(m−→
b +n−→c)·f(−→a)= 0.Adding the first two equations and subtracting the third gives
−→a ·(mf (−→b)+nf (−→c)−f(m−→b +n−→c))= 0.Because this is true for any vector−→a, we must havef(m−→
b +n−→c)=mf (−→
b)+nf (−→c).Therefore,fislinear, and it is determined by the images of the unit vectors−→
i =( 1 , 0 , 0 ),
−→
j =( 0 , 1 , 0 ), and−→
k =( 0 , 0 , 1 ).Iff(−→
i)=(a 1 ,a 2 ,a 3 ), f (−→
j)=(b 1 ,b 2 ,b 3 ), and f(−→
k)=(c 1 ,c 2 ,c 3 ),then for a vector−→x we havef(−→x)=⎡
⎣
a 1 b 1 c 1
a 2 b 2 c 2
a 3 b 3 c 3⎤
⎦−→x.Substituting inf(−→a)·−→a =0 successively−→a =−→
i,−→
j,−→
k, we obtaina 1 =b 2 =c 3 =- Then substituting in−→a·f(
−→
b)+−→
b·f(−→a),(−→a,−→
b)=(−→
i,−→
j),(−→
j,−→
k),(−→
k,−→
i),
we obtainb 1 =−a 2 ,c 2 =−b 3 ,c 1 =−a 3.
Settingk 1 =c 2 ,k 2 =−c 1 , andk 3 =b 1 yieldsf(k 1−→
i +k 2−→
j +k 3−→
k)=k 1 f(−→
i)+k 2 f(−→
j)+k 3 f(−→
k)=−→
0.
Becausefis injective andf(−→
0 )=
−→
0 , this implies thatk 1 =k 2 =k 3 =0. Then
f(−→x)=0 for all−→x, contradicting the assumption thatfwas a surjection. Therefore,
our original assumption was false, and no such bijection exists.
(Team Selection Test for the International Mathematical Olympiad, Belarus, 1999)
580.The important observation is thatA∗B=AB−
1
2
tr(AB),which can be checked by hand. The identity is therefore equivalent toCBA−BCA+ABC−ACB=−
1
2
tr(AC)B+1
2
tr(AB)C.