Advanced book on Mathematics Olympiad

(ff) #1

614 Geometry and Trigonometry


A B

D C

H

G

E

F

Figure 75

LetEbe the origin of the rectangular system of coordinates, with lineEBas the
y-axis. Let alsoA(−a, 0 ),B( 0 ,b),C(c, 0 ), wherea, b, c >0. We have to prove that
b^2 =ac.
By standard computations, we obtain the following equations and coordinates:


lineGF: y=
c−a
2 b

x;

lineBC:

x
c

+

y
b

= 1 ;

pointF: xF=
2 b^2 c
2 b^2 +c^2 −ac

,yF=
cb(c−a)
2 b^2 +c^2 −ac

;

lineAB:−

x
a

+

y
b

= 1 ;

pointG: xG=
2 ab^2
− 2 b^2 +ac−a^2

,yG=
ab(c−a)
− 2 b^2 +ac−a^2

.

The conditionEG=EFis equivalent toxF=−xG, that is,


2 b^2 c
2 b^2 +c^2 −ac

=

2 ab^2
2 b^2 −ac+a^2

.

This easily givesb^2 =acora=c, and since the latter is ruled out by hypothesis, this
completes the solution.
(Romanian Mathematics Competition, 2004, proposed by M. Becheanu)


596.The inequality from the statement can be rewritten as




2 − 1

2



1 −x^2 −(px+q)≤


2 − 1

2

,

or



1 −x^2 −


2 − 1

2

≤px+q≤


1 −x^2 +


2 − 1

2

.
Free download pdf