614 Geometry and Trigonometry
A B
D C
H
G
E
F
Figure 75
LetEbe the origin of the rectangular system of coordinates, with lineEBas the
y-axis. Let alsoA(−a, 0 ),B( 0 ,b),C(c, 0 ), wherea, b, c >0. We have to prove that
b^2 =ac.
By standard computations, we obtain the following equations and coordinates:
lineGF: y=
c−a
2 b
x;
lineBC:
x
c
+
y
b
= 1 ;
pointF: xF=
2 b^2 c
2 b^2 +c^2 −ac
,yF=
cb(c−a)
2 b^2 +c^2 −ac
;
lineAB:−
x
a
+
y
b
= 1 ;
pointG: xG=
2 ab^2
− 2 b^2 +ac−a^2
,yG=
ab(c−a)
− 2 b^2 +ac−a^2
.
The conditionEG=EFis equivalent toxF=−xG, that is,
2 b^2 c
2 b^2 +c^2 −ac
=
2 ab^2
2 b^2 −ac+a^2
.
This easily givesb^2 =acora=c, and since the latter is ruled out by hypothesis, this
completes the solution.
(Romanian Mathematics Competition, 2004, proposed by M. Becheanu)
596.The inequality from the statement can be rewritten as
−
√
2 − 1
2
≤
√
1 −x^2 −(px+q)≤
√
2 − 1
2
,
or
√
1 −x^2 −
√
2 − 1
2
≤px+q≤
√
1 −x^2 +