Geometry and Trigonometry 619
Remark.Let us show how this geometric identity can be used to derive a trigono-
metric identity. Forn= 2 m+1,man integer,A 0 A 1 ·A 0 A 2 ···A 0 Am =A 0 A 2 m·
A 0 A 2 m− 1 ···A 0 Am+ 1 ; henceA 0 A 1 ·A 0 A 2 ···A 0 Am=
√
2 m+1. On the other hand, for
i= 1 , 2 ,...,m, in triangleA 0 OAi,AAi=2 sin 2 m^2 π+ 1. We conclude that
sin
2 π
2 m+ 1
sin
4 π
2 m+ 1
···sin
2 mπ
2 m+ 1
=
1
2 m
√
2 m+ 1.
(J. Dürschák,Matemaikai Versenytételek, Harmadik kiadás Tankönyviadó, Budapest,
1965)
604.First solution: We assume that the radius of the circle is equal to 1. Set the origin
atBwithBAthe positivex-semiaxis andtthey-axis (see Figure 78). If∠BOM=θ,
thenBP=PM=tanθ 2. In trianglePQM,PQ=tanθ 2 /sinθ. So the coordinates of
Qare
⎛
⎜
⎝
tan
θ
2
sinθ
,tan
θ
2
⎞
⎟
⎠=
(
1
1 +cosθ
,
sinθ
1 +cosθ
)
.
Thexandycoordinates are related as follows:
(
sinθ
1 +cosθ
) 2
=
1 −cos^2 θ
( 1 +cosθ)^2
=
1 −cosθ
1 +cosθ
= 2
1
1 +cosθ
− 1.
Hence the locus ofQis the parabolay^2 = 2 x−1.
O
M
P
A B
Q
Figure 78
Second solution: With∠BOM=θwe have∠POM=∠POB=θ 2. SincePQis
parallel toOB, it follows that∠OPQ=θ 2. So the triangleOPQis isosceles, and