Geometry and Trigonometry 653658.The relation from the statement can be transformed into
tan^2 b=
tan^2 a+ 1
tan^2 a− 1=−
1
cos 2a.
This is further equivalent to
sin^2 b
1 −sin^2 b=
1
2 sin^2 a− 1.
Eliminating the denominators, we obtain
2 sin^2 asin^2 b= 1 ,which gives the desired sinasinb=±
√
2
2 =±sin 45◦.
(Romanian Mathematical Olympiad, 1959)659.We have
f(x)=sinxcosx+sinx+cosx+ 1 =1
2
(sinx+cosx)^2 −1
2
+sinx+cosx+ 1=1
2
[(sinx+cosx)^2 + 2 (sinx+cosx)+ 1 ]=1
2
[(sinx+cosx)+ 1 ]^2.This is a function ofy=sinx+cosx, namelyf(y)=^12 (y+ 1 )^2. Note that
y=cos(π
2
−x)
+cosx=2 cosπ
4
cos(
x−π
4)
=
√
2 cos(
x−π
4)
.
Soyranges between−
√
2 and√
- Hencef(y)ranges between 0 and^12 (
√
2 + 1 )^2.
660.Relate the secant and the cosecant to the tangent and cotangent:
sec^2 x=tan^2 x+ 1 ≥2 tanx and csc^2 x=cot^2 x+ 1 ≥2 cotx,where the inequalities come from the most particular case of AM–GM. It follows that
sec^2 nx+csc^2 nx≥ 2 n(tannx+cotnx).Now observe that
tannx+cotnx=tannx+1
tannx≥ 2 ,
again by the AM–GM inequality. We obtain
sec^2 nx+csc^2 nx≥ 2 n+^1 ,