656 Geometry and Trigonometry
Herex=sina,y=cosa,z=−^15. It follows that eitherx+y+z=0orx=y=z. The
latter would imply sina=cosa=−^15 , which violates the identity sin^2 a+cos^2 a=1.
Hencex+y+z=0, implying sina+cosa=^15. Then 5(sina+cosa)=1, and so
sin^2 a+2 sinacosa+cos^2 a=
1
25
.
It follows that 1+2 sinacosa= 0 .04; hence
5 (sina+cosa)+2 sinacosa= 0. 04 ,
as desired.
Conversely,
5 (sina+cosa)+2 sinacosa= 0. 04
implies
125 (sina+cosa)= 1 −50 sinacosa.
Squaring both sides and setting 2 sinacosa=byields
1252 + 1252 b= 1 − 50 b+ 252 b^2 ,
which simplifies to
( 25 b+ 24 )( 25 b− 651 )= 0.
We obtain 2 sinacosa=−^2425 , or 2 sinacosa=^65125. The latter is impossible because
sin 2a≤1. Hence 2 sinacosa=− 0 .96, and we obtain sina+cosa= 0 .2. Then
5 (sin^3 a+cos^3 a)+3 sinacosa= 5 (sina+cosa)(sin^2 a−sinacosa+cos^2 a)
+3 sinacosa
=sin^2 a−sinacosa+cos^2 a+3 sinacosa
=(sina+cosa)^2 =( 0. 2 )^2 = 0. 04 ,
as desired.
(Mathematical Reflections, proposed by T. Andreescu)
665.If we setbk=tan(ak−π 4 ),k= 0 , 1 ,...,n, then
tan
(
ak−
π
4
+
π
4
)
=
1 +tan(ak−π 4 )
1 −tan(ak−π 4 )
=
1 +bk
1 −bk