Advanced book on Mathematics Olympiad

(ff) #1

658 Geometry and Trigonometry


668.Denote the sum in question byS 1 and let


S 2 =

(

n
1

)

sinx+

(

n
2

)

sin 2x+···+

(

n
n

)

sinnx.

Using Euler’s formula, we can write


1 +S 1 +iS 2 =

(

n
0

)

+

(

n
1

)

eix+

(

n
2

)

e^2 ix+···+

(

n
n

)

einx.

By the multiplicative property of the exponential we see that this is equal to


∑n

k= 0

(

n
k

)(

eix

)k
=

(

1 +eix

)n
=

(

2 cos

x
2

)n(
ei

x 2 )n
.

The sum in question is the real part of this expression less 1, which is equal to


2 ncosn

x
2

cos

nx
2

− 1.

669.Combinef(x)with the functiong(x)=excosθsin(xsinθ)and write


f(x)+ig(x)=excosθ(cos(xsinθ)+isin(xsinθ))
=excosθ·eixsinθ=ex(cosθ+isinθ).

Using the de Moivre formula we expand this in a Taylor series as


1 +

x
1!

(cosθ+isinθ)+

x^2
2!

(cos 2θ+isin 2θ)+···+

xn
n!

(cosnθ+isinnθ )+···.

Consequently, the Taylor expansion off(x)around 0 is the real part of this series, i.e.,


f(x)= 1 +

cosθ
1!

x+

cos 2θ
2!

x^2 +···+

cosnθ
n!

xn+···.

670.Letzj=r(costj+isintj), withr =0 andtj∈( 0 ,π)∪(π, 2 π),j= 1 , 2 ,3. By
hypothesis,


sint 1 +rsin(t 2 +t 3 )= 0 ,
sint 2 +rsin(t 3 +t 1 )= 0 ,
sint 3 +rsin(t 1 +t 2 )= 0.

Lett=t 1 +t 2 +t 3. Then


sintj=−rsin(t−ti)=−rsintcostj−rcostsintj, forj= 1 , 2 , 3 ,
Free download pdf