658 Geometry and Trigonometry
668.Denote the sum in question byS 1 and let
S 2 =
(
n
1)
sinx+(
n
2)
sin 2x+···+(
n
n)
sinnx.Using Euler’s formula, we can write
1 +S 1 +iS 2 =(
n
0)
+
(
n
1)
eix+(
n
2)
e^2 ix+···+(
n
n)
einx.By the multiplicative property of the exponential we see that this is equal to
∑nk= 0(
n
k)(
eix)k
=(
1 +eix)n
=(
2 cosx
2)n(
eix 2 )n
.The sum in question is the real part of this expression less 1, which is equal to
2 ncosnx
2cosnx
2− 1.
669.Combinef(x)with the functiong(x)=excosθsin(xsinθ)and write
f(x)+ig(x)=excosθ(cos(xsinθ)+isin(xsinθ))
=excosθ·eixsinθ=ex(cosθ+isinθ).Using the de Moivre formula we expand this in a Taylor series as
1 +
x
1!(cosθ+isinθ)+x^2
2!(cos 2θ+isin 2θ)+···+xn
n!(cosnθ+isinnθ )+···.Consequently, the Taylor expansion off(x)around 0 is the real part of this series, i.e.,
f(x)= 1 +cosθ
1!x+cos 2θ
2!x^2 +···+cosnθ
n!xn+···.670.Letzj=r(costj+isintj), withr =0 andtj∈( 0 ,π)∪(π, 2 π),j= 1 , 2 ,3. By
hypothesis,
sint 1 +rsin(t 2 +t 3 )= 0 ,
sint 2 +rsin(t 3 +t 1 )= 0 ,
sint 3 +rsin(t 1 +t 2 )= 0.Lett=t 1 +t 2 +t 3. Then
sintj=−rsin(t−ti)=−rsintcostj−rcostsintj, forj= 1 , 2 , 3 ,