658 Geometry and Trigonometry
668.Denote the sum in question byS 1 and let
S 2 =
(
n
1
)
sinx+
(
n
2
)
sin 2x+···+
(
n
n
)
sinnx.
Using Euler’s formula, we can write
1 +S 1 +iS 2 =
(
n
0
)
+
(
n
1
)
eix+
(
n
2
)
e^2 ix+···+
(
n
n
)
einx.
By the multiplicative property of the exponential we see that this is equal to
∑n
k= 0
(
n
k
)(
eix
)k
=
(
1 +eix
)n
=
(
2 cos
x
2
)n(
ei
x 2 )n
.
The sum in question is the real part of this expression less 1, which is equal to
2 ncosn
x
2
cos
nx
2
− 1.
669.Combinef(x)with the functiong(x)=excosθsin(xsinθ)and write
f(x)+ig(x)=excosθ(cos(xsinθ)+isin(xsinθ))
=excosθ·eixsinθ=ex(cosθ+isinθ).
Using the de Moivre formula we expand this in a Taylor series as
1 +
x
1!
(cosθ+isinθ)+
x^2
2!
(cos 2θ+isin 2θ)+···+
xn
n!
(cosnθ+isinnθ )+···.
Consequently, the Taylor expansion off(x)around 0 is the real part of this series, i.e.,
f(x)= 1 +
cosθ
1!
x+
cos 2θ
2!
x^2 +···+
cosnθ
n!
xn+···.
670.Letzj=r(costj+isintj), withr =0 andtj∈( 0 ,π)∪(π, 2 π),j= 1 , 2 ,3. By
hypothesis,
sint 1 +rsin(t 2 +t 3 )= 0 ,
sint 2 +rsin(t 3 +t 1 )= 0 ,
sint 3 +rsin(t 1 +t 2 )= 0.
Lett=t 1 +t 2 +t 3. Then
sintj=−rsin(t−ti)=−rsintcostj−rcostsintj, forj= 1 , 2 , 3 ,