Geometry and Trigonometry 661
674.By eventually changingφ(t)toφ(t)+θ 2 , whereθis the argument of 4P^2 − 2 Q,
we may assume that 4P^2 − 2 Qis real and positive. We can then ignore the imaginary
parts and write
4 P^2 − 2 Q= 4
(∫∞
0
e−tcosφ(t)dt
) 2
− 4
(∫∞
0
e−tsinφ(t)dt
) 2
− 2
∫∞
0
e−^2 tcos 2φ(t)dt.
Ignore the second term. Increase the first term using the Cauchy–Schwarz inequality:
(∫∞
0
e−tcosφ(t)dt
) 2
=
(∫∞
0
e−
(^12) t
e−
(^12) t
cosφ(t)dt
) 2
≤
(∫∞
0
e−tdt
)(∫∞
0
e−tcos^2 φ(t)dt
)
=
∫∞
0
e−tcos^2 φ(t)dt.
We then have
4 P^2 − 2 Q≤ 4
∫∞
0
e−tcos^2 φ(t)dt− 2
∫∞
0
e−^2 tcos 2φ(t)dt
= 4
∫∞
0
(e−t−e−^2 t)cos^2 φ(t)dt+ 1
≤ 4
∫∞
0
(e−t−e−^2 t)dt+ 1 = 3.
Equality holds only when cos^2 φ(t)=1 for allt, and in general ifφ(t)is constant.
(K. Löwner, from G. Pólya, G. Szego, ̋ Aufgaben und Lehrsätze aus der Analysis,
Springer-Verlag, 1964)
675.The given inequality follows from the easier
√
ab+
√
( 1 −a)( 1 −b)≤ 1.
To prove this one, leta=sin^2 αandb=sin^2 β,α, β∈[ 0 ,π 2 ]. The inequality becomes
sinαsinβ+cosαcosβ≤1, or cos(α−β)≤1, and this is clearly true.
676.First, note that ifx>2, thenx^3 − 3 x> 4 x− 3 x=x>
√
x+2, so all solutionsx
should satisfy− 2 ≤x≤2. Therefore, we can substitutex=2 cosafor somea∈[ 0 ,π].
Then the given equation becomes
2 cos 3a=
√
2 ( 1 +cosa)=2 cos
a
2