668 Geometry and TrigonometryIt follows that the left-hand side telescopes as
1
8(3 tan 27◦−tan 9◦+9 tan 81◦−3 tan 27◦+27 tan 243◦−9 tan 81◦+81 tan 729◦−27 tan 243◦)=1
8
(81 tan 9◦−tan 9◦)=10 tan 9◦.(T. Andreescu)
690.Multiply the left-hand side by sin 1◦and transform it using the identity
sin((k+ 1 )◦−k◦)
sink◦sin(k+ 1 )◦
=cotk◦−cot(k+ 1 )◦.We obtaincot 45◦−cot 46◦+cot 47◦−cot 48◦+···+cot 131◦−cot 132◦+cot 133◦−cot 134◦.At first glance this sum does not seem to telescope. It does, however, after changing
the order of terms. Indeed, if we rewrite the sum ascot 45◦−(cot 46◦+cot 134◦)+(cot 47◦+cot 133◦)−(cot 48◦+cot 132◦)
+···+(cot 89◦+cot 91◦)−cot 90◦,then the terms in the parentheses cancel, since they come from supplementary angles.
The conclusion follows from cot 45◦=1 and cot 90◦=0.
(T. Andreescu)
691.The formulatan(a−b)=
tana−tanb
1 +tanatanb
translates intoarctan
x−y
1 +xy=arctanx−arctany.Applied tox=n+1 andy=n−1, it gives
arctan2
n^2=arctan(n+ 1 )−(n− 1 )
1 +(n+ 1 )(n− 1 )=arctan(n+ 1 )−arctan(n− 1 ).The sum in part (a) telescopes as follows:∑∞n= 1arctan2
n^2= lim
N→∞∑N
n= 1arctan2
n^2= lim
N→∞∑N
n= 1(arctan(n+ 1 )−arctan(n− 1 ))