Advanced book on Mathematics Olympiad

(ff) #1

670 Geometry and Trigonometry


nlim→∞Rn=

∏∞

n= 1

cos

π
2 n

.

The product can be made to telescope if we use the double-angle formula for sine written
as cosx=2 sinsin 2xx. We then have


∏∞

n= 2

cos

π
2 n
= lim
N→∞

∏N

n= 2

cos

π
2 n
= lim
N→∞

∏N

n= 2

1

2

·

sin
π
2 n−^1
sin

π
2 n

= lim
N→∞

1

2 N

sin
π
2
sin

π
2 N

=

2

π

lim
N→∞

π
2 N
sin

π
2 N

=

2

π

.

Thus the answer to the problem isπ^2.


Remark.As a corollary, we obtain the formula


2

π

=


2

2

·


2 +


2

2

·


2 +


2 +


2

2

···.

This formula is credited to F. Viète, although Archimedes already used this approximation
of the circle by regular polygons to computeπ.


694.Fork= 1 , 2 ,...,59,


1 −
cos( 60 ◦+k◦)
cosk◦

=

cosk◦−cos( 60 ◦+k◦)
cosk◦

=

2 sin 30◦sin( 30 ◦+k◦)
cosk◦
=
cos( 90 ◦− 30 ◦−k◦)
cosk◦

=

cos( 60 ◦−k◦)
cosk◦

.

So


∏^59

k= 1

(

1 −

cos( 60 ◦+k◦)
cosk◦

)

=

cos 59◦cos 58◦···cos 1◦
cos 1◦cos 2◦···cos 59◦

= 1.

695.We have


( 1 −cot 1◦)( 1 −cot 2◦)···( 1 −cot 44◦)

=

(

1 −

cos 1◦
sin 1◦

)(

1 −

cos 2◦
sin 2◦

)

···

(

1 −

cos 44◦
sin 44◦

)

=

(sin 1◦−cos 1◦)(sin 2◦−cos 2◦)···(sin 44◦−cos 44◦)
sin 1◦sin 2◦···sin 44◦

.
Free download pdf