Combinatorics and Probability 753=
∑n+^1k= 0((
n
k)
+
(
n
k− 1))
[x]k[y]n−k+ 1 =∑n+^1k= 0(
n+ 1
k)
[x]k[y]n+ 1 −k.The induction is complete.
Second solution: The identity can also be proved by computing(dtd)ntx+yin two different
ways. First,
(
d
dt
)n
tx+y=(x+y)(x+y− 1 )···(x+y−n+ 1 )tx+y−n=[x+y]ntx+y−n.Second, by the Leibniz rule,
(
d
dt)n
(tx·ty)=∑nk= 0(
n
k)((
d
dt)k
tx)((
d
dt)n−k
ty)
=
∑nk= 0(
n
k)
[x]k[y]n−ktx+y−n.The conclusion follows.
866.The binomial formula(Q+P)n =
∑n
k= 0(n
k)
qQkPn−kis of no use because thevariablesQandPdo not commute, so we cannot setP=−Q. The solution relies on
theq-Pascal triangle. But theq-Pascal triangle is written as
(
n
k
)
q=qk(
n− 1
k)
q+
(
n− 1
k− 1)
q.
With the standard convention that
(n
k)
q=0ifk<0ork>n, we have
∑k(− 1 )kqk(k 2 − 1 )(
n
k)
q=
∑
k(− 1 )kqk(k 2 − 1 )(
qk(
n− 1
k)
q+
(
n− 1
k− 1)
q)
=
∑
k(− 1 )kqk(k+ 1 )
2(
n− 1
k)
q−
∑
k(− 1 )k−^1 qk(k− 1 )
2(
n− 1
k− 1)
q.
Now just shift the index in the second sumk→k+1 to obtain the difference of two
equal sums. The identity follows.
867.LetG(x)=
∑
nynx
nbe the generating function of the sequence. It satisfies thefunctional equation
( 1 −ax)G(x)= 1 +bx+bx^2 +··· =1
1 −bx.
We find that
G(x)=1
( 1 −ax)( 1 −bx)=
A
1 −ax+
B
1 −bx=
∑
n(Aan+Bbn)xn,