788 Combinatorics and Probability
similarly forr 2. The distribution ofθis uniform on[ 0 ,π]. These three distributions are
independent; hence
E(A(OP Q))=
1
2
(∫ 1
0
2 r^2 dr
) 2 (
1
π
∫π
0
sinθdθ
)
=
4
9 π
,
and
E(A(OP Q)+A(OQR)+A(ORP ))=
4
3 π
.
We now treat the case in whichP′,Q′,R′lie on a semicircle in that order. Set
θ 1 =∠POQandθ 2 =∠QOR; then the distribution ofθ 1 ,θ 2 is uniform on the region
0 ≤θ 1 , 0 ≤θ 2 ,θ 1 +θ 2 ≤π.
In particular, the distribution onθ =θ 1 +θ 2 isπ^2 θ 2 on[ 0 ,π]. SetrP =OP,rQ =
OQ,rR=OR. Again, the distribution onrPis given by 2rPon[ 0 , 1 ], and similarly
forrQ,rR; these are independent of each other and the joint distribution ofθ 1 ,θ 2. Write
E′(X)for the expectation of a random variableXrestricted to this part of the domain.
Letχbe the random variable with value 1 ifQis inside triangleOPRand 0 otherwise.
We now compute
E′(A(OP R))=
1
2
(∫ 1
0
2 r^2 dr
) 2 (∫π
0
2 θ
π^2
sinθdθ
)
=
4
9 π
and
E′(χ A(OP R))=E′
(
2 A(OP R)^2
θ
)
=
1
2
(∫ 1
0
2 r^3 dr
) 2 (∫π
0
2 θ
π^2
θ−^1 sin^2 θdθ
)
=
1
8 π
.
Also, recall that given any triangleXY Z,ifTis chosen uniformly at random insideXY Z,
the expectation ofA(T XY )is the area of triangle bounded byXYand the centroid of
XY Z, namely,^13 A(XY Z).
Letχbe the random variable with value 1 ifQis inside triangleOPRand 0 otherwise.
Then
E′(A(OP Q)+A(OQR)+A(ORP )−A(P QR))
= 2 E′(χ (A(OP Q)+A(OQR))+ 2 E′(( 1 −χ )A(OP R))
= 2 E′(
2
3
χ A(OP R))+ 2 E′(A(OP R))− 2 E′(χ A(OP R))