where D
p and^ s^ are, respectively, the mean and standard devi-
ation of the distribution. The mean diameter D
p^ is defined by
DDfDDp∫∞ ppp()
∞
d (5)
and the standard deviation, indicating the dispersion of the
distribution, is given by
s^2
2
∫∞()DDfDDp p ()pp
∞
d. (6)
In the practical measurement of particle sizes, D
p^ and^ s^ are
determined by
D
nD
N
nD D
N
p
ipi
ipi p
∑
()
⎛
⎝
⎜
⎜
⎞
⎠
⎟
⎟
s
(^212) (7)
where n i is the number of particles with diameter D pi and N
is the total particle number measured.
TABLE 2
Names and defining equations for various average diameters
Defining equations
General case In the case of log-normal distribution
number mean diam. D 1 nD
N
p ln D^1 ^ A^ 0.5C^ ^ B^ 2.5C
length mean diam. D 2
nD
nD
p
p
(^2) ln D
2 ^ A^ 1.5C^ ^ B^ 1.5C
surface mean, Sauter or mean
volume-surface diam. D 3
nD
nD
sD
S
p
p
p
3
2
ln D 3 A 2.5C B 0.5C
volume or mass mean diam. D 4
nD
nD
mD
M
p
p
p
4
3
ln D 4 A 3.5C B 0.5C
diam. of average surface Ds nD
N
p
(^2) ln D
s^ ^ A^ 1.0C^ ^ B^ 2.0C
diam. of average volume or mass Dv nD
N
p
3
3 ln Dv^ ^ A^ 1.5C^ ^ B^ 1.5C
harmonic mean diam. Dh N
(/ )Dp
ln Dh A 0.5C B 3.5C
number median diam. or geometric
mean diam. NMD exp
nDln
N
⎡ p
⎣
⎢
⎤
⎦
⎥
NMD
volume or mass median diam. MMD
exp
ln
nD D
nD
pp
p
3
3
⎡
⎣
⎢
⎤
⎦
⎥
ln MMD A 3 C
exp
mDln
M
⎡ p
⎣
⎢
A ln NMD, B ln MMD, C (ln sg)^2
N(total number) n, S(total surface) s, M(total mass) m
AEROSOLS 17
C001_002_r03.indd 17C001_002_r03.indd 17 11/18/2005 10:09:08 AM11/18/2005 10:09:08 AM