0.00110 –810 –710 –610 –510 –410 –310 –210 –11000.01 0.1 1 10
Dp (mm)Kelvin
effect,
(water
droplet)Relaxation timeC
c at 10mm HgDiffusion coeff., D(n
p =1
)Pulse height(example)Slip coeff., Ccτgat 10mm Hgτg1°C/cmVthAverage absolute value of Browniandisplacement in 1s,∆X in air20°C in air
1atm
10 mm HgSettling velocity, VtIn air (p=1g cm–3)11010 –210 –1100101102100100012345678Slip coefficient, CcPulse height (light scattering)Increase in vapor pressure by Kelvin effect, p/d
pSettling velocity v(cm/s), Diffusion coefficient D (cmt2 /s),Relaxation timeτg(s), Electrical mobility B(cme2 V–1s–1),Average absolute value of Brownian displacement in 1s∆x=4D/p(cm),Thermophoretic velocity vth(cm/s)Vt =( p – (^) f)gDpCc
18 m
18 m
(3.1)
(3.4)
(3.6)
(3.8)
Cc = 1 + 2.514 (^) Dλ
p
λ Dp
Dp λ
- 0.80 exp (–0.55 ) (3.2)
(3.3)
(3.5)
(3.7)
Cc=1+(2 / pDp) [6.32 + 2.01 exp (–0.1095pDp)] p in cm Hg, Dp in^ mm
∆x = 4Dt D = kTCc
τg =
pDpCc
Be =
np e Cc
Pd / P 8 = exp ( 4Mσ
RT lDp
)
=1g cmp
–3
Electrical mobility, B
e
3 pmDp
3 pmDp
ρ
ρ
ρ
ρ^2
2
ρ
ρ
8
p
FIGURE 3 Fundamental mechanical and dynamic properties of aerosol particles suspended in a gas.
AEROSOLS 19
C001_002_r03.indd 19C001_002_r03.indd 19 11/18/2005 10:09:10 AM11/18/2005 10:09:10 AM