Integration
P1^
6
EXAMPLE 6.8 Evaluate (^) ∫ 12 ()^3142 −+ 4
xx
d.x
SOLUTION
1
2
(^421)
(^242)
31
(^31434)
3
31
∫ ()−+ =−∫ ( + )
= − −−
−−
−−
xx
xx xx
xx
d d
++
=− ++
=−()++ −+
4
(^114)
81 1
1
2
(^31)
2
1
8
1
2
x
x x
x
()– ++
4
(^438)
Indefinite integrals
The integral symbol can be used without the limits to denote that a function is to
be integrated. Earlier in the chapter, you saw ddyx
= 2 x ⇒ y = x^2 + c.
An alternative way of expressing this is
∫^2 x^ dx^ =^ x^2 +^ c.
EXAMPLE 6.9 Find (^) ∫(2x^3 − 3 x + 4) dx.
SOLUTION
∫(2x^3 −^3 x^ +^ 4)^ dx^ =+ +
=+ +
24 32 4
2
3
2 4
42
42
xx
xc
xx
xc
–
–.
EXAMPLE 6.10 Find the indefinite integral xx x
(^32)
∫()+ d.
SOLUTION
xx xx xx
xx c
(^323212)
(^25232)
5
2
3
()+ =+()
=+ +
∫∫d d
Read as ‘the
integral of 2x with
respect to x’.
3
2 1
5 2 5 2 2 5
+= , and dividing by
3
2 1
5 2 5 2 2 5
+=
is
the same as multiplying by
3
2 1
5 2 5 2 2 5
+=
.