Integration
P1^
6
(ii) Use your answers to part (i) to find these.
(a) (^) ∫ 42 ()xx−^3 d (b) (^) ∫()xx− 23 d
(c) (^) ∫ 72 ()xx+ 56 d (d) (^) ∫ 28 () 25 xx+^6 d
(e) (^) ∫ 62 ()xx− 1 −^4 d (f) 1
() 21 x^4
x
∫ −
d
(g) −
∫ −
4
18 x
dx (h) 8
∫ 18 − x
dx
In the activity, you saw that you can use the chain rule in reverse to integrate
functions in the form (ax + b)n.
For example,
This tells you that (^) ∫^15 ()^32 xx+=^4 d ()^32 xc++^5
⇒ () 324 1 () 325
∫ xx+=d 15 xc++.
EXAMPLE 6.16 Find 3
∫ 52 − x
dx.
SOLUTION
3
52
35 2
(^12)
−
∫∫=− −
x
dxx() dx
Use the reverse chain rule to find the function which differentiates to give
35 2
(^12)
()− x−.
This function must be related to () 52
(^12)
− x.
Increasing the power
of the bracket by 1.
The derivative of () 52
(^12)
− x is 12 25 25 2
(^1212)
×−()−=x− −−()x−
So the derivative of − − 35 2
(^12)
()x is 35 2
(^12)
()− x−
⇒
In general, d()axdxb an()()ax b
- n n
=+ + - 1
1
Since integration is the reverse of differentiation, you can write:
⇒
d
d
() ()
()
(^325332)
1532
(^54)
4
x
x x
x
+ =× ×+
=+
35 2352
35 2
(^1212)
() ()
.
−=−− +
=− −+
−
∫ xx xc
xc
d
an ax bx ax bc
ax bx
an
n n
n
()() ()
()
()
(
++ =+ +
+=
+
∫
∫
1 +
1
1
d^1
d aax++bc).n+^1