Trigonometry
218
P1^
7
From triangle ABD,
sin; 60 23 cos; 60 1 tan;
2
°= °= 60 °= 3
sin; 60 °= 23 cos; 60 °= 21 tan; 60 °= 3
sin; 60 °= 23 cos; 60 °= 21 tan; 60 °= 3
sin; 30 12 cos; 30 23 tan. 30 1
3
°= °= °=
sin; 30 cos; tan.
1
2 30
3
2 30
1
3
sin;°= 30 12 cos;°= 30 23 tan.°= 30 1
3
°= °= °=
ExAmPlE 7.1 Without using a calculator, find the value of cos 60°sin 30° + cos^2 30°.
(Note that cos^2 30° means (cos 30°)^2 .)
SOlUTION
cos 60°sin 30° + cos^2 30°
(ii) The angle 45°
In figure 7.6, triangle PQR is a right-angled isosceles triangle with equal sides of
length 1 unit.
Using Pythagoras’ theorem, PQ = 2.
This gives
sin; 45 1 cos; tan.
2
45 1
2
°= °= 45 °= 1
(iii) The angles 0° and 90°
Although you cannot have an angle of 0° in a triangle (because one side would be
lying on top of another), you can still imagine what it might look like. In figure
7.7, the hypotenuse has length 1 unit and the angle at X is very small.
=× +
=+
=
1
2
1
2
3
2
1
4
3
4
1
2
.
45°
P R
Q
1
1
Figure 7.6
opposite
X Y
Z
adjacent
hypotenuse
Figure 7.7