P1^
7
Exercise(^) 7B
225
Method 2
When one side of the identity looks more complicated than the other side, you
can work with this side until you end up with the same as the simpler side.
ExAmPlE 7.4 Prove the identity 1 cos−sincθθθ−≡os^1 tanθ.
SOlUTION
The LHS of this identity is more complicated, so manipulate the LHS until you
end up with tan θ.
Write the LHS as a single fraction:
cos
sincos
cos( sin)
cos( sin)
θ
θθ
θθ
1 θθ
1 1
1
2
− −≡−−
−
≡cosscos(+−−insin)(^21)
1
θθ
θθ
≡ −+ −
−
1 1
1
sins^2 in
cos( sin)
θθ
θθ
≡ −
−
≡ −
−
sinsin
cos( sin)sin( sin)
cos( sinθθ
θθθθ
θθ2
11
1 ))
sin
cos
tan≡
≡
θ
θ
θasrequiredExERCISE 7B Prove each of the following identities.
1 1 – cos^2 θ ≡ sin^2 θ
2 (1 – sin^2 θ)tan θ ≡ cos θ sin θ3 12 12
sin^2cos
θ sinθ
θ
−≡4 tan
cos2
2
θ^11
θ
≡−5 sincos
sincos22
22θθ (^312)
θθ
−+
−
≡
6 1122 221
cossθθin cossθθin+≡7 tanθ+≡cossinsθθθ in^1 cosθ(^8 1) +^1 sins+ 1 −^1 in ≡^22
θθ cosθ
9 Prove the identity^1
1
2
2
−
- tan
tan
x
x
≡ 1 – 2 sin^2 x.
[Cambridge AS & A Level Mathematics 9709, Paper 1 Q3 June 2007]
Since sin^2 θ + cos^2 θ ≡ 1,
cos^2 θ ≡ 1 – sin^2 θ