Answers
P1^
6 (i) h + 4 r = 100,
2 πrh + 2 πr^2 = 1400 π
(ii) 6000 π or^9800027 π cm^3
7 (i) (3x + 2 y)(2x + y) m^2
(iii) xy=^12 , =^14
Exercise 1H (Page 37)
1 (i) a 6
(ii) b 2
(iii) c − 2
(iv) d −^43
(v) e 7
(vi) f − 1
(vii) g 1.4
(viii) h 0
2 (i) 1 p 4
(ii) p 1 or p 4
(iii) − 2 x − 1
(iv) x −2 or x − 1
(v) y −1 or y 3
(vi) − 4 z 5
(vii) q 2
(viii) y −2 or y 4
(ix) –2 x ^13
(x) y −^12 or y 6
(xi) 1 x 3
(xii) y −^12 or y ^35
3 (i) k ^98
(ii) k − 4
(iii) k 10 or k − 10
(iv) k 0 or k 3
4 (i) k 9
(ii) k −^18
(iii) − 8 k 8
(iv) 0 k 8
Chapter 2
Activity 2.1 (Page 40)
A:^12 ; B: −1; C: 0; D: ∞
●?^ (Page^ 40)
No, the numerator and denominator
of the gradient formula would have
the same magnitude but the opposite
sign, so m would be unchanged.
Activity 2.2 (Page 41)
An example of L 2 is the line joining
(4, 4) to (6, 0).
m 1 = 12 , m 2 = − 2 ⇒ m 1 m 2 = −1.
Activity 2.3 (Page 41)
ABE BCD
AB = BC
AEB = BDC
BAE = CBD
⇒ Triangles ABE and BCD are
congruent so BE = CD and AE = BD.
⇒
mm
mm
1 2
12 1
==
=× =
BE
AE
BD
CD
BE
AE
BD
CD
;–
––
Exercise 2A (Page 44)
1 (i) (a) − 2
(b) (1, −1)
(c) 20
(d) 12
(ii) (a) − 3
(b) (^) () 312 ,^12
(c) 10
(d) (^13)
(iii) (a) 0
(b) (0, 3)
(c) 12
(d) Infinite
(iv) (a) 103 &
(b) (^) () 3312 ,–
(c) 109 &
(d) – (^103) &
(v) (a) (^32)
(b) (^) () 31 ,^12
(c) 13
(d) –^23
(vi) (a) Infinite
(b) (1, 1)
(c) 6
(d) 0
2 5
3 1
4 (i) AB:B 21 ,,C:^32 CD:D^12 , A: 23
(ii) Parallelogram
(iii)
5 (i) 6
(ii) AB= 20 ,BC= 5
(iii) 5 square units
y
(^0) 1 2 3 4 5 6 x
1
2
3
(^4) L 1
L 2
y
0 2 4 6 8 x
2
4
6
D
A
B
8 C