Cambridge International AS and A Level Mathematics Pure Mathematics 1

(Michael S) #1
Answers

286

P1^


(xv)

(xvi)

(xvii)

(xviii)

(xix)

(xx)

  2 (i) Perpendicular
(ii) Neither
(iii) Perpendicular
(iv) Neither
(v) Neither
(vi) Perpendicular
(vii) Parallel
(viii) Parallel
(ix) Perpendicular
(x) Neither
(xi) Perpendicular
(xii) Neither

●?^ (Page^ 51)
Take (x 1 , y 1 ) to be (0, b) and (x 2 , y 2 )
to be (a, 0).
The formula gives yb 0 – –b=ax–– 00
which can be rearranged to give
x
a

y
+=b 1.

Exercise 2C (Page 54)
  1  (i) x = 7
(ii) y = 5
(iii) y = 2 x
(iv) x + y = 2
(v) x + 4 y + 12 = 0
(vi) y = x
(vii) x = − 4
(viii) y = − 4
(ix) x + 2 y = 0
(x) x + 3 y − 12 = 0
 2  (i) y = 2 x + 3
(ii) y = 3 x
(iii) 2 x + y + 3 = 0
(iv) y = 3 x − 14
(v) 2 x + 3 y = 10
(vi) y = 2 x − 3
  3 (i) x + 3 y = 0
(ii) x + 2 y = 0
(iii) x − 2 y − 1 = 0

(iv) 2 x + y − 2 = 0
(v) 3 x − 2 y − 17 = 0
(vi) x + 4 y − 24 = 0
  4 (i) 3 x − 4 y = 0
(ii) y = x − 3
(iii) x = 2
(iv) 3 x + y − 14 = 0
(v) x + 7 y − 26 = 0
(vi) y = − 2

(^5) (i)
(ii) AC: x + 3 y − 12 = 0,
BC: 2x + y − 14 = 0
(iii) AB=^20 ,,BC=^20
area = 10 square units
(iv) 10
  6 (i)
(ii) y = x; x + 2 y − 6 = 0;
2 x + y − 6 = 0
  7 (i)
x
y
O
–3
2
3 y – 2y = 6
x
y
O
2
5
2 x + 5y = 10
x
y
O
3
2 x + y – 3 = 0
(^112)
x
y
O
2 y = x – 
–2

x
y
O
x + 3y – 6 = 0
2
6
x
y
O
(^2) y = 2 – x
2
O
A(0, 4)
C(6, 2)
B
x – 2y + 8 = 0
x
y
y
O 2 4 6 x
2
4
6 A
B
–6–4–20 2 4 6 8 10 12
2
4
6
8
10 C
B
A
D
x
y

Free download pdf