Cambridge International AS and A Level Mathematics Pure Mathematics 1

(Michael S) #1
Chapter

(^6)
299
P1^
15 y = 6 x − x
2
2 +^2
16 (i) y = 4 x − 12 x^2 + 3
(ii) x + 2 y = 20
(iii) (7, 6.5)
Activity 6.1 (Page 183)
The bounds converge on the value
A = (^4513).
Activity 6.2 (Page 187)
(i) Area = 2 1 [3 + (b + 3)]b − 21 [3 + (a + 3)]a
= 21 [6b + b^2 − 6 a − a^2 ]
(ii) = (^) [b
2
2 +^3 b]^ −^ [
a^2
2 +^3 a]
= (^) [x
2
2 +^3 x]
b
a
(iii) (^) ∫ba(x + 3) dx = (^) [x
2
2 +^3 x]
b
a
Exercise 6B (Page 189)
  1 (i) x^3 + c
(ii) x^5 + x^7 + c
(iii) 2 x^3 + 5 x + c
(iv) xx x xc
43 2
43 + + 2 + +
(v) x^11 + x^10 + c
(vi) x^3 + x^2 + x + c
(vii) x
3
3 +^5 x^ +^ c^
(viii) 5 x + c
(ix) 2 x^3 + 2 x^2 + c
(x) x
5
5 +^ x
(^3) + x (^2) + x + c
  2 (i) − 103 x−^3 + c
(ii) x^2 + x−^3 + c
(iii) 2 x + x
4
4 −^
5
2 x
− (^2) + c
(iv) 2 x^3 + 7 x−^1 + c
(v) 4 x
(^54)



  • c
    (vi) − 31 x 3 + c
    (vii) 23 x x + c
    (viii) (^25)
    x^5

  • (^4) x + c
      3 (i) 3
    (ii) 9
    (iii) 27
    (iv) 12
    (v) 12
    (vi) 15
    (vii) 114
    (viii)  16
    (ix) 2209
    (x) 0
    (xi) –105^34
    (xii) 5
      4 (i) 241
    (ii) (^34)
    (iii) 56
    (iv) − (^223)
    (v) (^1758)
    (vi) (^1023)
      5 (i) A: (2, 4); B: (3, 6)
    (ii) 5
    (iv) In this case the area is not a
    trapezium since the top is
    curved.
      6 (i)
    (ii) 213
     7 (i)
    (ii) − 2  x  2
    (iii) 1023
      8 (i)
    (ii) 223 square units
      9 2113 square units
    10 (i)
    (ii) 1823 square units
    11 (i)
    (ii) y = x^2
    (iii) y = x^2 : area = 13 square units
    y = x^3 : area = 14 square units
    (iv) Expect ∫^21 x^3 dx  ∫^21 x^2 dx,
    since the curve y = x^3 is
    above the curve y = x^2
    between 1 and 2.
    Confirmation: ∫ 12 x^3 dx = (^334)
    and ∫ 12 x^2 dx = (^213)
    12 (i)
    O 1 2 x
    y
    y
    –2 2
    4
    O x
    
    – O 2 x
    y
    
    O 2 x
    y
    –1 1 3 4
    O x
    y y = x (^3) y = x 2
    y
    –1 –1O 1 2 x

Free download pdf