Cambridge International AS and A Level Mathematics Pure Mathematics 1

(Michael S) #1
Answers

P1^


  4  (i) 89 3
  5  (i)  4 d
  6  (i) BX =  33

Activity 7.1 (Page 223)

●?^ (Page^ 227)
  1 The oscillations continue to the
left.

  2 y = sin θ:
− reflect in θ = 90° to give the
curve for 90°  θ  180°
− rotate the curve for
0  θ  180° through 180°,
centre (180°, 0) to give the
curve for 180°  θ  360°.
y = cos θ:
− translate −°^900  and reflect
in y axis to give the curve for
0  θ  90°
− rotate this through 180°,
centre (90°, 0) to give the
curve for 90°  θ  180°
− reflect the curve for
0  θ  180° in θ = 180°
to give the curve for
180°  θ  360°.

Activity 7.2 (Page 228)

●?^ (Page^ 232)
The tangent graph repeats every
180° so, to find more solutions, keep
adding or subtracting 180°.

Exercise 7C (Page 233)
  1 (i), (ii)

(ii) 30°, 150°
(iii) 30°, 150° (± multiples of 360°)
(iv) −0.5

  2 (i), (ii)

(ii) x = −53°, 53°, 307°, 413°
(to nearest 1°)
(iii), (iv)

(iv)^ x^ = 53°, 127°, 413°^
(to nearest 1°)
(v) For 0  x  90°,
sin x = 0.8 and cos x = 0.6
have the same root.
For 90°  x  360°,
sin x and cos x are never
both positive.
  3 (Where relevant, answers are to
the nearest degree.)
(i) 45°, 225°
(ii) 60°, 300°
(iii) 240°, 300°
(iv) 135°, 315°
(v) 154°, 206°
(vi) 78°, 282°
(vii) 194°, 346°
(viii) 180°

  4 (i) 23

(ii)^

1
2
(iii) 1

(iv) (^12)
(v) – 21
(vi) 0
Only sin θ positive
Only tan θ positive
All positive
Only cos θ positive
θ
y
0 
y VLn θ
–180
θ
y
0 
y FRV θ
–270
–360
–90
y = cos θ
θ
y
–90 0  90  180  270  360  450 
1
–1
y = tan θ
θ
y
–90 0  90  180  270  360  450 
y = sin θ
θ
y
–90 0  90  180  270  360  450 
1
–1
x
VLQ x
30 0 20

 2
±
0
0
360 
x
FRV x
–90–3 3 307 13
1
–1
90  180  270  360 0
06
x
VLn x
–90 3 127  13
1
–1
90  180  270  360 0
08

Free download pdf