Finding the equation of a lineP1^
2
EXAMPLE 2.6 Find the equation of the line with gradient 3 which passes through the point (2, −4).
SOLUTION
Using y − y 1 = m(x − x 1 )
⇒ y − (−4) = 3(x − 2)
⇒ y + 4 = 3 x − 6
⇒ y = 3 x− 10.(ii) Given two points, (x 1 , y 1 ) and (x 2 , y 2 )
The two points are used to find the
gradient:myy
=xx
21
21–
–.
This value of m is then substituted in
the equation
y − y 1 = m (x − x 1 ).
This givesyyyy- xx xx
–
(^1) – –.
21
21 1
= ()
Rearranging the equation gives
yy
yyxx
xxyy
xxyy
xx–
–
–
–
–
–
–
–
1
211
211
121
21= or =EXAMPLE 2.7 Find the equation of the line joining (2, 4) to (5, 3).
SOLUTION
Taking (x 1 , y 1 ) to be (2, 4) and (x 2 , y 2 ) to be (5, 3), and substituting the values in
yy
yyxx
xx–
–
–
–
1
211
21=
gives
yx––
–.
4
34
2
= 52
This can be simplified to x + 3 y − 14 = 0.●?^ Show that the equation of the line in figure 2.19
can be written
x
ay
b+=1.
yx(x 2 , y 2 )(x 1 , y 1 ) (x, y)OFigure 2.18(a, 0)
Oyx(0, b)Figure 2.19