untitled

(Barré) #1

Prove : L.H.S. =
siA


siA
1 n

1 n




=
( 1 n )( 1 n )


( 1 n )( 1 n )
siA siA

siA siA
 

 

=
si A


siA
2

2
1 n

( 1 n )




=
co A


siA
2

2
s

( 1  n )

=
cosA


1 sinA

=
cosA


1
Ñ
coA

siA
s

n

=secAtanA
= R.H.S. (proved).
Example 9. IftanAsinA a and tanAsinA b, prove that, a^2 b^2 4 ab.
Prove : Here given that, tanAsinA a and tanAsinA b
L.H.S. = a^2 b^2
=(tanAsinA)^2 (tanAsinA)^2


= 4 tanAsinA [(ab)^2 (ab)^2 4 ab]


= 4 tan^2 Asin^2 A
= 4 tan^2 A( 1 cos^2 A)
= 4 tan^2 Atan^2 A˜cos^2 A
= 4 tan^2 Asin^2 A
= 4 (tanAsinA)(tanAsinA)
= 4 ab
= R.H.S. (proved)
Activity : 1. If cot^4 Acot^2 A 1 , prove that, cos^4 θcos^2 A 1


  1. If sin^2 Asin^4 A 1 , prove that, tan^4 Atan^2 A 1


Example 10. If
2


5
secAtanA , find the value of secAtanA.

Solution: Here given that, .............()
2


5
secAtanA i

We know that, sec^2 A 1 tan^2 A


ȏ—Ž–‹’Ž›‹‰–Š‡—‡”ƒ–‘”ƒ†–Š‡
†‡‘‹ƒ–‘”„› ( 1 sinA)Ȑ
Free download pdf