Prove : L.H.S. =
siA
siA
1 n1 n
=
( 1 n )( 1 n )
( 1 n )( 1 n )
siA siAsiA siA
=
si A
siA
22
1 n( 1 n )
=
co A
siA
22
s( 1 n )=
cosA
1 sinA=
cosA
1
Ñ
coAsiA
sn=secAtanA
= R.H.S. (proved).
Example 9. IftanAsinA a and tanAsinA b, prove that, a^2 b^2 4 ab.
Prove : Here given that, tanAsinA a and tanAsinA b
L.H.S. = a^2 b^2
=(tanAsinA)^2 (tanAsinA)^2
= 4 tanAsinA [(ab)^2 (ab)^2 4 ab]
= 4 tan^2 Asin^2 A
= 4 tan^2 A( 1 cos^2 A)
= 4 tan^2 Atan^2 Acos^2 A
= 4 tan^2 Asin^2 A
= 4 (tanAsinA)(tanAsinA)
= 4 ab
= R.H.S. (proved)
Activity : 1. If cot^4 Acot^2 A 1 , prove that, cos^4 θcos^2 A 1- If sin^2 Asin^4 A 1 , prove that, tan^4 Atan^2 A 1
Example 10. If
2
5
secAtanA , find the value of secAtanA.Solution: Here given that, .............()
2
5
secAtanA iWe know that, sec^2 A 1 tan^2 A
ȏ
( 1 sinA)Ȑ