(b) If
1 3
1 3
cosA sinA
cosA sinA
, find the value of A.
(c) Prove that,
1 tanA
1 tanA
cos 2 A 2
2
, if A 45 $.
(d) Solve : 2 cos^2 θ 3 sinθ 3 0 , where θ is an acute angle.
Solution : (a) 2 cos(AB) 1
or,
2
1
cos(AB)
or,cos(AB) cos45$ [
2
1
cos45$ ]
? AB 45 $..................(i)
and 2 sin(AB) 3
or,
2
3
sin(AB)
or,sin(AB) sin 60 $ [
2
3
sin 60 $ ]
? AB 60 $....................(ii)
Adding (i) and (ii), we get,
2 A 105 $
?
2
105 $
A
$
2
1
52
Again, subtracting (i) from (ii), we get
2 B 15 $
or,
2
15 $
B
?
$
2
1
B 7
Required
$
2
1
A 52 and
$
2
1
B 7
(b)
1 3
1 3
s n
s n
coA siA
coA siA
or,
1 3 1 3
1 3 1 3
s n s n
s n s n
coA si A coA siA
coA siA coA siA