0DWK,;;)RUPD
12 21 12 21
1
bc bc ab ab
x
, or
12 21
12 21
ab ab
bc bc
x
Again,
12 21 12 21
1
ca ca ab ab
y
, or
12 21
12 2 1
ab ab
ca ca
y
? The solution of the given equations : ̧ ̧
¹
·
̈ ̈
©
§
12 21
1 2 21
12 21
12 21
ab ab
ca ca
ab ab
bc bc
(x,y) ,
We observe :
Equations Relation between xand y Illustration
0
0
2 2 2
1 1 1
ax by c
ax by c
12 21 12 21 12 21
1
ca ca ab ab
y
bc bc
x
x y 1
2 2 2 2 2
1 1 1 1 1
a b c a b
a b c a b
[N.B. : The method of cross-multiplication can also be applied by keeping the
constant terms of both equations on the right hand side. In that case, changes of sign
will occur ; but the solution will remain same.]
Activity : If the system of equations
¿
¾
½
3 0
4 7 0
x y
x y
are expressed as the system of equations
¿
¾
½
0
0
2 2 2
1 1 1
ax by c
ax by c
,
find the values of a 1 ,b 1 ,c 1 ,a 2 ,b 2 ,c 2.
Example 3. Solve by the method of cross-multiplication : 6 xy 1
3 x 2 y 13
Solution : Making the right hand side of the equations 0 (zero) by transposition, we get,
3 2 13 0
6 1 0
x y
x y comparing the equations with
¿
¾
½
0
0
2 2 2
1 1 2 1
ax by c
ax by c
respectively,
we get, a 1 6 ,b 1 1 ,c 1 1
a 2 3 ,b 2 2 ,c 2 13
By the method of cross-multiplication, we get,
12 21 12 21 12 21
1
ca ca ab ab
y
bc bc
x
Illustration :
x y 1
2 2 2 2 2
1 1 1 1 1
a b c a b
a b c a b