untitled

(Barré) #1

0DWK,;;)RUPD


12 21 12 21

1
bc bc ab ab

x



, or
12 21

12 21
ab ab

bc bc
x




Again,
12 21 12 21


1
ca ca ab ab

y



, or
12 21

12 2 1
ab ab

ca ca
y




? The solution of the given equations : ̧ ̧
¹


·
̈ ̈
©

§






12 21

1 2 21
12 21

12 21
ab ab

ca ca
ab ab

bc bc
(x,y) ,

We observe :


Equations Relation between xand y Illustration

0

0
2 2 2

1 1 1
 

 
ax by c

ax by c
12 21 12 21 12 21

1
ca ca ab ab

y
bc bc

x




x y 1

2 2 2 2 2

1 1 1 1 1
a b c a b

a b c a b

[N.B. : The method of cross-multiplication can also be applied by keeping the
constant terms of both equations on the right hand side. In that case, changes of sign
will occur ; but the solution will remain same.]


Activity : If the system of equations

¿

¾

½


 
3 0

4 7 0
x y

x y
are expressed as the system of equations
¿

¾

½
 

 
0

0

2 2 2

1 1 1
ax by c

ax by c
,

find the values of a 1 ,b 1 ,c 1 ,a 2 ,b 2 ,c 2.

Example 3. Solve by the method of cross-multiplication : 6 xy 1
3 x 2 y 13
Solution : Making the right hand side of the equations 0 (zero) by transposition, we get,


3 2 13 0

6 1 0
 

 
x y

x y comparing the equations with

¿

¾

½
 

 
0

0
2 2 2

1 1 2 1
ax by c

ax by c
respectively,

we get, a 1 6 ,b 1  1 ,c 1  1
a 2 3 ,b 2 2 ,c 2  13

By the method of cross-multiplication, we get,


12 21 12 21 12 21

1
ca ca ab ab

y
bc bc

x




Illustration :
x y 1

2 2 2 2 2

1 1 1 1 1
a b c a b

a b c a b



Free download pdf