0DWK,;;)RUPD
- (xa)(ax 1 ) 26. (a^2 2 a 4 )( 3 a^2 6 a 10 )
- ( 2 z 3 x 5 )( 10 x 7 z 3 ) 28. ( 3 a 17 b)( 9 a 7 b)
- (xayy)(axxy) 30. 3 x( 2 x 1 )( 4 x^2 2 x 1 )
- (ab)^2 (a^4 2 a^3 b 6 a^2 b^2 2 ab^3 b^4 ) 32. (x 2 )(x^2 x 1 )
- (a 3 )(a^2 3 a 3 ) 34. (ab)( 2 a^2 5 ab 8 b^2 )
- ( 2 x 3 )( 4 x^2 12 x 21 ) 36. ( 6 )( 36 6 )
27
(^122)
ab a abb
- ( 2 1 )( 4 2 1 )
8
(^12)
a a a 38. ̧ ̧
¹
·
̈ ̈
©
§
̧ ̧
¹
·
̈ ̈
©
§
^4
4 2 2
2
2
3 9 3
b
a ab
b
a
- ̧
¹
·
̈
©
§
̧
¹
·
̈
©
§ 2
2
1
2
2
1
2
a
a
a
a 40. (a 4 )( 19 a^2 13 a 7 )
- (x 6 )(x 10 ) 42. (x^2 7 x 4 )(x^2 7 x 18 )
- (x^2 8 x 20 )(x^2 8 x 2 )
Exercise 3⋅ 4
- ( 6 x 1 )(x 1 ) 2. (a 1 )( 3 a^2 3 a 5 )
- (xy)(x 3 y)(x 2 y) 4. (x 6 )(x 1 )
- ( 2 x 3 )(x 1 ) 6. (x 3 )( 3 x 2 )
- (x 2 )(x 1 )(x 3 ) 8. (x 1 )(x 2 )(x 3 )
- (a 3 )(a^2 3 a 12 ) 10. (a 1 )(a 1 )(a^2 2 a 3 )
- (a 1 )(a 4 )(a 2 ) 12. (x 2 )(x^2 x 2 )
- (ab)(a^2 6 abb^2 ) 14. (x 3 )(x^2 3 x 8 )
- (xy)(x 3 y)(x 2 y) 16. (x 2 )( 2 x 1 )(x^2 1 )
- ( 2 x 1 )(x 1 )(x 2 )( 2 x 1 ) 18. x(x 1 )(x^2 x 1 )(x^2 x 1 )
- ( 4 x 1 )(x^2 x 1 ) 20. ( 2 x 1 )( 3 x 2 )( 3 x 1 )