Example 11. Resolve into factors : 8 x^3 36 x^2 y 54 xy^2 27 y^3.
Solution : 8 x^3 36 x^2 y 54 xy^2 27 y^3
= ( 2 x)^3 3 u( 2 x)^2 u 3 y 3 u 2 xu( 3 y)^2 ( 3 y)^3
= ( 2 x 3 y)^3 ( 2 x 3 y)( 2 x 3 y)( 2 x 3 y)
(g) Applying the formulae : a^3 b^3 (ab)(a^2 abb^2 ) and
a^3 b^3 (ab)(a^2 abb^2 ):
Example 12. Resolve into factors : (i) 8 a^3 27 b^3 (ii)a^6 64
Solution : (i) 8 a^3 27 b^3 ( 2 a)^3 ( 3 b)^3
= ( 2 a 3 b){( 2 a)^2 2 au 3 b( 3 b)^2 }
= ( 2 a 3 b)( 4 a^2 6 ab 9 b^2 )
(ii) a^6 ^64 = (a^2 )^3 ( 4 )^3
= (a^2 4 ){(a^2 )^2 a^2 u 4 ( 4 )^2 }
= (a^2 4 )(a^4 4 a^2 16 )
But, a^2 4 a^2 22 (a 2 )(a 2 )
and a^4 4 a^2 16 (a^2 )^2 ( 4 )^2 4 a^2
= (a^2 4 )^2 2 (a^2 )( 4 ) 4 a^2
= (a^2 4 )^2 4 a^2
= (a^2 4 )^2 ( 2 a)^2
= (a^2 4 2 a)(a^2 4 2 a)
= (a^2 2 a 4 )(a^2 2 a 4 )
Alternative method :
a^6 64 = (a^3 )^2 82
=(a^3 8 )(a^3 8 )
=(a^3 23 )(a^3 23 )
=(a 2 )(a^2 2 a 4 )u(a 2 )(a^2 2 a 4 )
=(a 2 )(a 2 )(a^2 2 a 4 )(a^2 2 a 4 )
( 2 )( 2 )( 2 4 )( 2 4 )
64
2 2
6
?
a a a a a a
a
Activity : Resolve into factors:
- 2 x^4 16 x 2. 8 a^3 3 a^2 b 3 ab^2 b^3 3. (ab)^3 (ab)^3
(h) Factors of the expression with fractional coefficients :
Factors of the expressions with fraction may be expressed in different ways.
For example, ̧
¹
·
̈
©
§
̧
¹
·
̈
©
§
9
1
3 3
1
3
1
27
(^12)
3
a^3 a^3 a a a
Again, {( 3 ) ( 1 )}
27
1
( 27 1 )
27
1
27
3 1 3 3 3
a a a