Proof : We know, logaM logbMulogab [formula 5]
Putting M a we get,
logaa logbaulogab
or 1 logbaulogbb;
ba
ab log1
?log
or
a
b
ba log1
log (proved).Example 7. Find the value : (a) log 10100 (b) ̧
¹
·
̈
©§
91
log 3 (c) log 381Solution:
(a) log 10100 log 10102 2 log 1010 [log 10 Mr rlog 10 M]
2 u 1 [logaa 1 ] = 2
(b) log 3 2 log 3 [ log log ]
3
1
log
91
log 3 3 2 ̧ 3 2 3 aMr r aM
¹·
̈
©§
̧
¹·
̈
©§ 2 u 1 [logaa 1 ] = 2(c)
8
324
34
log 381 log 33 log {( 3 )} log 38
8 1 ,[ log 1 ]
8 log 3 3 [ log log ]
u
aM r M
aar
a
Example 8. (a) What is the log of 5 5 to the base 5?
(b) log 400 4 ; what is the base?
Solution : (a) 5 5 to the base 5
231 ,[ log 1 ]
23log 5 ,[ log log ]
23log 5 5 log( 5 5 ) log 5523
5
21
5 5uuaM r Maar
a(b) Let the base be a.
? by the question, loga 400 4
?a^4 400