2.2 INTEGRATION
dA
ρ(φ)
ρ(φ+dφ)
ρdφ
x
y
O
B
C
Figure 2.9 Finding the area of a sectorOBCdefined by the curveρ(φ)and
the radiiOB,OC, at angles to thex-axisφ 1 ,φ 2 respectively.
dA=^12 ρ^2 dφ, as illustrated in figure 2.9, and hence the total area between two
anglesφ 1 andφ 2 is given by
A=
∫φ 2
φ 1
1
2 ρ
(^2) dφ. (2.38)
An immediate observation is that the area of a circle of radiusais given by
A=
∫ 2 π
0
1
2 a
(^2) dφ=[ 1
2 a
(^2) φ]^2 π
0 =πa
(^2).
The equation in polar coordinates of an ellipse with semi-axesaandbis
1
ρ^2
=
cos^2 φ
a^2
+
sin^2 φ
b^2
.
Find the areaAof the ellipse.
Using (2.38) and symmetry, we have
A=
1
2
∫ 2 π
0
a^2 b^2
b^2 cos^2 φ+a^2 sin^2 φ
dφ=2a^2 b^2
∫π/ 2
0
1
b^2 cos^2 φ+a^2 sin^2 φ
dφ.
To evaluate this integral we writet=tanφand use (2.35):
A=2a^2 b^2
∫∞
0
1
b^2 +a^2 t^2
dt=2b^2
∫∞
0
1
(b/a)^2 +t^2
dt.
Finally, from the list of standard integrals (see subsection 2.2.3),
A=2b^2
[
1
(b/a)
tan−^1
t
(b/a)
]∞
0
=2ab
(π
2
− 0
)
=πab.