PRELIMINARY CALCULUS
(c) [(x−a)/(b−x)]^1 /^2.
2.38 Determine whether the following integrals exist and, where they do, evaluate
them:
(a)
∫∞
0
exp(−λx)dx;(b)
∫∞
−∞
x
(x^2 +a^2 )^2
dx;
(c)
∫∞
1
1
x+1
dx;(d)
∫ 1
0
1
x^2
dx;
(e)
∫π/ 2
0
cotθdθ;(f)
∫ 1
0
x
(1−x^2 )^1 /^2
dx.
2.39 Use integration by parts to evaluate the following:
(a)
∫y
0
x^2 sinxdx;(b)
∫y
1
xlnxdx;
(c)
∫y
0
sin−^1 xdx;(d)
∫y
1
ln(a^2 +x^2 )/x^2 dx.
2.40 Show, using the following methods, that the indefinite integral ofx^3 /(x+1)^1 /^2 is
J= 352 (5x^3 − 6 x^2 +8x−16)(x+1)^1 /^2 +c.
(a) Repeated integration by parts.
(b) Settingx+1=u^2 and determiningdJ/duas (dJ/dx)(dx/du).
2.41 The gamma function Γ(n) is defined for alln>−1by
Γ(n+1)=
∫∞
0
xne−xdx.
Find a recurrence relation connecting Γ(n+1) and Γ(n).
(a) Deduce (i) the value of Γ(n+1) whennis a non-negative integer, and (ii)
the value of Γ
( 7
2
)
,giventhatΓ
( 1
2
)
=
√
π.
(b) Now, taking factorial( mforanymto be defined bym!=Γ(m+ 1), evaluate
−^32
)
!.
2.42 DefineJ(m, n), for non-negative integersmandn, by the integral
J(m, n)=
∫π/ 2
0
cosmθsinnθdθ.
(a) EvaluateJ(0,0),J(0,1),J(1,0),J(1,1),J(m,1),J(1,n).
(b) Using integration by parts, prove that, formandnboth>1,
J(m, n)=
m− 1
m+n
J(m− 2 ,n)andJ(m, n)=
n− 1
m+n
J(m, n−2).
(c) Evaluate (i)J(5,3), (ii)J(6,5) and (iii)J(4,8).
2.43 By integrating by parts twice, prove thatInas defined in the first equality below
for positive integersnhas the value given in the second equality:
In=
∫π/ 2
0
sinnθcosθdθ=
n−sin(nπ/2)
n^2 − 1
.
2.44 Evaluate the following definite integrals:
(a)
∫∞
0 xe
−xdx;(b)∫^1
0
[
(x^3 +1)/(x^4 +4x+1)
]
dx;
(c)
∫π/ 2
0 [a+(a−1) cosθ]
− (^1) dθwitha> 1
2 ;(d)
∫∞
−∞(x
(^2) +6x+18)− (^1) dx.