PRELIMINARY CALCULUS
(c) [(x−a)/(b−x)]^1 /^2.2.38 Determine whether the following integrals exist and, where they do, evaluate
them:
(a)
∫∞
0exp(−λx)dx;(b)∫∞
−∞x
(x^2 +a^2 )^2dx;(c)∫∞
11
x+1dx;(d)∫ 1
01
x^2dx;(e)∫π/ 20cotθdθ;(f)∫ 1
0x
(1−x^2 )^1 /^2dx.2.39 Use integration by parts to evaluate the following:
(a)∫y0x^2 sinxdx;(b)∫y1xlnxdx;(c)∫y0sin−^1 xdx;(d)∫y1ln(a^2 +x^2 )/x^2 dx.2.40 Show, using the following methods, that the indefinite integral ofx^3 /(x+1)^1 /^2 is
J= 352 (5x^3 − 6 x^2 +8x−16)(x+1)^1 /^2 +c.(a) Repeated integration by parts.
(b) Settingx+1=u^2 and determiningdJ/duas (dJ/dx)(dx/du).2.41 The gamma function Γ(n) is defined for alln>−1by
Γ(n+1)=∫∞
0xne−xdx.Find a recurrence relation connecting Γ(n+1) and Γ(n).(a) Deduce (i) the value of Γ(n+1) whennis a non-negative integer, and (ii)
the value of Γ( 7
2)
,giventhatΓ( 1
2)
=
√
π.
(b) Now, taking factorial( mforanymto be defined bym!=Γ(m+ 1), evaluate
−^32)
!.
2.42 DefineJ(m, n), for non-negative integersmandn, by the integral
J(m, n)=∫π/ 20cosmθsinnθdθ.(a) EvaluateJ(0,0),J(0,1),J(1,0),J(1,1),J(m,1),J(1,n).
(b) Using integration by parts, prove that, formandnboth>1,J(m, n)=m− 1
m+nJ(m− 2 ,n)andJ(m, n)=n− 1
m+nJ(m, n−2).(c) Evaluate (i)J(5,3), (ii)J(6,5) and (iii)J(4,8).2.43 By integrating by parts twice, prove thatInas defined in the first equality below
for positive integersnhas the value given in the second equality:
In=∫π/ 20sinnθcosθdθ=n−sin(nπ/2)
n^2 − 1.
2.44 Evaluate the following definite integrals:
(a)∫∞
0 xe−xdx;(b)∫^1
0[
(x^3 +1)/(x^4 +4x+1)]
dx;(c)∫π/ 2
0 [a+(a−1) cosθ]− (^1) dθwitha> 1
2 ;(d)
∫∞
−∞(x(^2) +6x+18)− (^1) dx.