COMPLEX NUMBERS AND HYPERBOLIC FUNCTIONS
Expresssin 3θandcos 3θin terms of powers ofcosθandsinθ.
Using de Moivre’s theorem,
cos 3θ+isin 3θ=(cosθ+isinθ)^3
=(cos^3 θ−3cosθsin^2 θ)+i(3 sinθcos^2 θ−sin^3 θ). (3.28)
We can equate the real and imaginary coefficients separately, i.e.
cos 3θ=cos^3 θ−3cosθsin^2 θ
=4cos^3 θ−3cosθ (3.29)
and
sin 3θ=3sinθcos^2 θ−sin^3 θ
=3sinθ−4sin^3 θ.
This method can clearly be applied to finding power expansions of cosnθand
sinnθfor any positive integern.
The converse process uses the following properties ofz=eiθ,
zn+
1
zn
=2cosnθ, (3.30)
zn−
1
zn
=2isinnθ. (3.31)
These equalities follow from simple applications of de Moivre’s theorem, i.e.
zn+
1
zn
=(cosθ+isinθ)n+(cosθ+isinθ)−n
=cosnθ+isinnθ+cos(−nθ)+isin(−nθ)
=cosnθ+isinnθ+cosnθ−isinnθ
=2cosnθ
and
zn−
1
zn
=(cosθ+isinθ)n−(cosθ+isinθ)−n
=cosnθ+isinnθ−cosnθ+isinnθ
=2isinnθ.
In the particular case wheren=1,
z+
1
z
=eiθ+e−iθ=2cosθ, (3.32)
z−
1
z
=eiθ−e−iθ=2isinθ. (3.33)