4.8 EXERCISES
4.8 TheN+ 1 complex numbersωmare given byωm=exp(2πim/N), form=
0 , 1 , 2 ,... ,N.
(a) Evaluate the following:
(i)
∑N
m=0
ωm, (ii)
∑N
m=0
ωm^2 , (iii)
∑N
m=0
ωmxm.
(b) Use these results to evaluate:
(i)
∑N
m=0
[
cos
(
2 πm
N
)
−cos
(
4 πm
N
)]
, (ii)
∑^3
m=0
2 msin
(
2 πm
3
)
.
4.9 Prove that
cosθ+cos(θ+α)+···+cos(θ+nα)=
sin^12 (n+1)α
sin^12 α
cos(θ+^12 nα).
4.10 Determine whether the following series converge (θandpare positive real
numbers):
(a)
∑∞
n=1
2sinnθ
n(n+1)
, (b)
∑∞
n=1
2
n^2
, (c)
∑∞
n=1
1
2 n^1 /^2
,
(d)
∑∞
n=2
(−1)n(n^2 +1)^1 /^2
nlnn
, (e)
∑∞
n=1
np
n!
.
4.11 Find the real values ofxfor which the following series are convergent:
(a)
∑∞
n=1
xn
n+1
, (b)
∑∞
n=1
(sinx)n, (c)
∑∞
n=1
nx,
(d)
∑∞
n=1
enx, (e)
∑∞
n=2
(lnn)x.
4.12 Determine whether the following series are convergent:
(a)
∑∞
n=1
n^1 /^2
(n+1)^1 /^2
, (b)
∑∞
n=1
n^2
n!
, (c)
∑∞
n=1
(lnn)n
nn/^2
, (d)
∑∞
n=1
nn
n!
.
4.13 Determine whether the following series are absolutely convergent, convergent or
oscillatory:
(a)
∑∞
n=1
(−1)n
n^5 /^2
, (b)
∑∞
n=1
(−1)n(2n+1)
n
, (c)
∑∞
n=0
(−1)n|x|n
n!
,
(d)
∑∞
n=0
(−1)n
n^2 +3n+2
, (e)
∑∞
n=1
(−1)n 2 n
n^1 /^2
.
4.14 Obtain the positive values ofxfor which the following series converges:
∑∞
n=1
xn/^2 e−n
n