PARTIAL DIFFERENTIATION
Thus, from (5.17), we may write
∂
∂x
=cosφ
∂
∂ρ
−
sinφ
ρ
∂
∂φ
,
∂
∂y
=sinφ
∂
∂ρ
+
cosφ
ρ
∂
∂φ
.
Now it is only a matter of writing
∂^2 f
∂x^2
=
∂
∂x
(
∂f
∂x
)
=
∂
∂x
(
∂
∂x
)
f
=
(
cosφ
∂
∂ρ
−
sinφ
ρ
∂
∂φ
)(
cosφ
∂
∂ρ
−
sinφ
ρ
∂
∂φ
)
g
=
(
cosφ
∂
∂ρ
−
sinφ
ρ
∂
∂φ
)(
cosφ
∂g
∂ρ
−
sinφ
ρ
∂g
∂φ
)
=cos^2 φ
∂^2 g
∂ρ^2
+
2cosφsinφ
ρ^2
∂g
∂φ
−
2cosφsinφ
ρ
∂^2 g
∂φ∂ρ
+
sin^2 φ
ρ
∂g
∂ρ
+
sin^2 φ
ρ^2
∂^2 g
∂φ^2
and a similar expression for∂^2 f/∂y^2 ,
∂^2 f
∂y^2
=
(
sinφ
∂
∂ρ
+
cosφ
ρ
∂
∂φ
)(
sinφ
∂
∂ρ
+
cosφ
ρ
∂
∂φ
)
g
=sin^2 φ
∂^2 g
∂ρ^2
−
2cosφsinφ
ρ^2
∂g
∂φ
+
2cosφsinφ
ρ
∂^2 g
∂φ∂ρ
+
cos^2 φ
ρ
∂g
∂ρ
+
cos^2 φ
ρ^2
∂^2 g
∂φ^2
.
When these two expressions are added together the change of variables is complete and
we obtain
∂^2 f
∂x^2
+
∂^2 f
∂y^2
=
∂^2 g
∂ρ^2
+
1
ρ
∂g
∂ρ
+
1
ρ^2
∂^2 g
∂φ^2
.
5.7 Taylor’s theorem for many-variable functions
We have already introduced Taylor’s theorem for a functionf(x) of one variable,
in section 4.6. In an analogous way, the Taylor expansion of a functionf(x, y)of
two variables is given by
f(x, y)=f(x 0 ,y 0 )+
∂f
∂x
∆x+
∂f
∂y
∆y
+
1
2!
[
∂^2 f
∂x^2
(∆x)^2 +2
∂^2 f
∂x∂y
∆x∆y+
∂^2 f
∂y^2
(∆y)^2
]
+···, (5.18)
where ∆x=x−x 0 and ∆y=y−y 0 , and all the derivatives are to be evaluated
at (x 0 ,y 0 ).