8.1 VECTOR SPACES
In the above basis we may express any two vectorsaandbas
a=
∑N
i=1
aiˆei and b=
∑N
i=1
bieˆi.
Furthermore,in such an orthonormal basiswe have, for anya,
〈ˆej|a〉=
∑N
i=1
〈ˆej|aieˆi〉=
∑N
i=1
ai〈ˆej|eˆi〉=aj. (8.16)
Thus the components ofaare given byai=〈ˆei|a〉. Note that this isnottrue
unless the basis is orthonormal. We can write the inner product ofaandbin
terms of their components in an orthonormal basis as
〈a|b〉=〈a 1 ˆe 1 +a 2 eˆ 2 +···+aNˆeN|b 1 eˆ 1 +b 2 ˆe 2 +···+bNeˆN〉
=
∑N
i=1
a∗ibi〈ˆei|eˆi〉+
∑N
i=1
∑N
j=i
a∗ibj〈eˆi|ˆej〉
=
∑N
i=1
a∗ibi,
where the second equality follows from (8.14) and the third from (8.15). This is
clearly a generalisation of the expression (7.21) for the dot product of vectors in
three-dimensional space.
We may generalise the above to the case where the base vectorse 1 ,e 2 ,...,eN
arenotorthonormal (or orthogonal). In general we can define theN^2 numbers
Gij=〈ei|ej〉. (8.17)
Then, ifa=
∑N
i=1aieiandb=
∑N
i=1biei, the inner product ofaandbis given by
〈a|b〉=
〈N
∑
i=1
aiei
∣
∣
∣
∣
∣
∣
∑N
j=1
bjej
〉
=
∑N
i=1
∑N
j=1
a∗ibj〈ei|ej〉
=
∑N
i=1
∑N
j=1
a∗iGijbj. (8.18)
We further note that from (8.17) and the properties of the inner product we
requireGij=G∗ji. This in turn ensures that‖a‖=〈a|a〉is real, since then
〈a|a〉∗=
∑N
i=1
∑N
j=1
aiG∗ija∗j=
∑N
j=1
∑N
i=1
a∗jGjiai=〈a|a〉.