10.9 CYLINDRICAL AND SPHERICAL POLAR COORDINATES
∇Φ=
∂Φ
∂r
ˆer+
1
r
∂Φ
∂θ
eˆθ+
1
rsinθ
∂Φ
∂φ
ˆeφ
∇·a =
1
r^2
∂
∂r
(r^2 ar)+
1
rsinθ
∂
∂θ
(sinθaθ)+
1
rsinθ
∂aφ
∂φ
∇×a =
1
r^2 sinθ
∣∣
∣
∣∣
∣
∣∣
eˆr reˆθ rsinθeˆφ
∂
∂r
∂
∂θ
∂
∂φ
ar raθ rsinθaφ
∣∣
∣
∣∣
∣
∣∣
∇^2 Φ=
1
r^2
∂
∂r
(
r^2
∂Φ
∂r
)
+
1
r^2 sinθ
∂
∂θ
(
sinθ
∂Φ
∂θ
)
+
1
r^2 sin^2 θ
∂^2 Φ
∂φ^2
Table 10.3 Vector operators in spherical polar coordinates; Φ is a scalar field
andais a vector field.
x
y
z
r
rdθ
φ
dφ
dφ
dr
rsinθ
rsinθdφ
rsinθdφ
θ
dθ
Figure 10.10 The element of volume in spherical polar coordinates is given
byr^2 sinθdrdθdφ.
we can rewrite the first term on the RHS as follows:
1
r^2
∂
∂r
(
r^2
∂Φ
∂r
)
=
1
r
∂^2
∂r^2
(rΦ),
which can often be useful in shortening calculations.