LINE, SURFACE AND VOLUME INTEGRALS
R
Q
P
S
xyzT
h 1 ∆u 1 eˆ 1h 2 ∆u 2 eˆ 2h 3 ∆u 3 eˆ 3Figure 11.10 A general volume ∆Vin orthogonal curvilinear coordinates
u 1 ,u 2 ,u 3 .PTgives the vectorh 1 ∆u 1 ˆe 1 ,PSgivesh 2 ∆u 2 ˆe 2 andPQgives
h 3 ∆u 3 ˆe 3.By considering the infinitesimal planar surface elementPQRSin figure 11.10, show that
(11.17) leads to the usual expression for∇×ain orthogonal curvilinear coordinates.The planar surfacePQRSis defined by the orthogonal vectorsh 2 ∆u 2 eˆ 2 andh 3 ∆u 3 ˆe 3
at the pointP. If we traverse the loop in the directionPSRQthen, by the right-hand
convention, the unit normal to the plane isˆe 1 .Writinga=a 1 ˆe 1 +a 2 eˆ 2 +a 3 ˆe 3 , the line
integral around the loop in this direction is given by
∮
PSRQa·dr=a 2 h 2 ∆u 2 +[
a 3 h 3 +∂
∂u 2(a 3 h 3 )∆u 2]
∆u 3−
[
a 2 h 2 +∂
∂u 3(a 2 h 2 )∆u 3]
∆u 2 −a 3 h 3 ∆u 3=
[
∂
∂u 2(a 3 h 3 )−∂
∂u 3(a 2 h 2 )]
∆u 2 ∆u 3.Therefore from (11.17) the component of∇×ain the directionˆe 1 atPis given by
(∇×a) 1 = lim
∆u 2 ,∆u 3 → 0[
1
h 2 h 3 ∆u 2 ∆u 3∮
PSRQa·dr]
=
1
h 2 h 3[
∂
∂u 2(h 3 a 3 )−∂
∂u 3(h 2 a 2 )]
.
The other two components are found by cyclically permuting the subscripts 1, 2, 3.
Finally, we note that we can also write the∇^2 operator as a surface integral bysettinga=∇φin (11.15), to obtain
∇^2 φ=∇·∇φ= lim
V→ 0(
1
V∮S∇φ·dS)
.