17.5 SUPERPOSITION OF EIGENFUNCTIONS: GREEN’S FUNCTIONS
Now, the boundary conditions require thatB=0andsin
(√
1
4 −λ
)
π=0,andso
√
1
4 −λ=n, wheren=0,±^1 ,±^2 ,....
Therefore, the independent eigenfunctions that satisfy the boundary conditions are
yn(x)=Ansinnx,
wherenis any non-negative integer, and the corresponding eigenvalues areλn=^14 −n^2.
The normalisation condition further requires
∫π
0
A^2 nsin^2 nx dx=1 ⇒ An=
(
2
π
) 1 / 2
.
Comparison with (17.51) shows that the appropriate Green’s function is therefore given
by
G(x, z)=
2
π
∑∞
n=0
sinnxsinnz
1
4 −n
2.
Case (i). Using (17.50), the solution withf(x)=sin2xis given by
y(x)=
2
π
∫π
0
(∞
∑
n=0
sinnxsinnz
1
4 −n
2
)
sin 2zdz=
2
π
∑∞
n=0
sinnx
1
4 −n
2
∫π
0
sinnzsin 2zdz.
Now the integral is zero unlessn= 2, in which case it is
∫π
0
sin^22 zdz=
π
2
.
Thus
y(x)=−
2
π
sin 2x
15 / 4
π
2
=−
4
15
sin 2x
is the full solution forf(x)=sin2x. This is, of course, exactly the solution found by using
the methods of chapter 15.
Case (ii). The solution withf(x)=x/2isgivenby
y(x)=
∫π
0
(
2
π
∑∞
n=0
sinnxsinnz
1
4 −n
2
)
z
2
dz=
1
π
∑∞
n=0
sinnx
1
4 −n
2
∫π
0
zsinnz dz.
The integral may be evaluated by integrating by parts. Forn=0,
∫π
0
zsinnz dz=
[
−
zcosnz
n
]π
0
+
∫π
0
cosnz
n
dz
=
−πcosnπ
n
+
[
sinnz
n^2
]π
0
=−
π(−1)n
n
.
Forn= 0 the integral is zero, and thus
y(x)=
∑∞
n=1
(−1)n+1
sinnx
n
( 1
4 −n
2 ),
is the full solution forf(x)=x/2. Using the methods of subsection 15.1.2, the solution
is found to bey(x)=2x− 2 πsin(x/2), which may be shown to be equal to the above
solution by expanding 2x− 2 πsin(x/2) as a Fourier sine series.